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Editorial

As cardiometabolic diseases associated with obesity (i.e.
hyperglycemia/ insulin resistance, hypertension and dyslipidemia)
become increasingly pervasive in the modern world [1], it is
evident that the demand for novel therapeutic agents will increase
in the coming years. One avenue that continues to show promise is
targeted disruption of reactive oxygen species (ROS) production and
its consequent deleterious effects. Numerous studies have reported
increased oxidative damage in muscle [2-4], adipose [5-7] and
livers [8] with obesity, the collective implication being that there is
likely to be a causal link between ROS and cardiometabolic diseases
associated with obesity. Lipid peroxidation of polyunsaturated
fatty acids (PUFAs) is a well-documented consequence of oxidative
stress, particularly in the cardiovascular system [9-14]. Formation
of a, B unsaturated aldehydes occurs as PUFA-derived lipid
peroxides accumulate during periods of persistent oxidative stress.
The biochemistry of this reaction is well described in the literature
and lipid peroxidation end products such as Thiobarbituric acid
reactive substances (TBARS), 4-hydroxy-2-nonenal (HNE) and
Malondialdehyde (MDA) are common biomarkers of cellular stress
and toxicity [15,16].

However, the biological significance of these species as
physiological signaling molecules, or their role in etiology of
cardiomyopathy is unclear [17-20]. Here, we shall discuss the
potential pathways that link carbonyl stress to the cardiac remodeling
known to occur with obesity and its associated pathologies (i.e., Type
II diabetes). A brief outline of prototypical and novel therapeutic
compounds that mitigate carbonyl stress is also included.

Carbonyl stress, chronic Inflammation and profibrotic
signaling in the obese/diabetic heart

The most prominent histopathologic finding in the hearts
of obese/diabetic patients is fibrosis, as damaged myocardium is
infiltrated by fibroblasts [21-23]. Myocyte death, collagen deposition
and development of fibrotic lesions are visible even before decreased
cardiac performance is observed [24,25]. Upon initial onset, fibrosis
is a compensatory response that adds increased tensile strength

to counteract pressure overload in the heart. The transition to

maladaptation occurs gradually as muscle fibers are encased in
extracellular matrix, leading to ventricular wall stiffening and
ultimately decompensation which manifests as diastolic dysfunction
[26]. Over-production of extracellular matrix has physical effects on
the microstructure as well as changes in physiological environment
through the release of factors such as transforming growth factor-
B(TGEF-B) [27]. The most notable change in cellular physiology is
the transformation of fibroblasts to myofibroblasts. Myofibroblasts
are crucial in the normal response to injury and there is evidence
to suggest the processes that trigger this transformation are tissue
dependent [28,29]. Myofibroblasts are highly specialized for the
secretion of extracellular matrix. Furthermore, they are more
responsive to stimulation by factors such cytokines [30]. In certain
patients this transition in phenotype to a myofibroblast- predominant
population of cells may increase risk of adverse cardiac events [31-
33]. For example, since fibrotic tissue lacks electrical conductivity
it has been proposed that this change in phenotype may directly
account for increased risk of ventricular arrhythmias. Studies
show that hyperglycemia/ insulin resistance promotes fibroblast -
myofibroblasts transformation [29]. Furthermore in the context of
lipid peroxidation it is intriguing that in vitro treatment of human
fibroblasts with carbonyl modified proteins produces a similar
phenotype transition [24]. This effect may be mitigated by carbonyl
scavengers such as carnosine (Box 1) and it is postulated that
inhibition of the TGF-p pathway may serve as a potential mechanism
[34]. These observations are not confined to patients with metabolic
syndrome, in factin a subset of ‘healthy’ obese patients with a relatively
normal cardiometabolic profile (normotensive, euglycemic), the early
stages of irreversible fibrotic cardiac remodeling have been observed
[35].

Advanced Glycation End-products, a unique type of
carbonyl stress with therapeutic potential

The receptor for advanced glycation end-products (RAGE) is
a 35KDa receptor that belongs to the immunoglobulin G family of
receptors [36,37]. RAGE does not recognize a primary amino acid
sequence nor arrangement. It is essentially a pattern recognition
receptor (PRR) that displays affinity to a wide variety of glycated
proteins [38]. Since in many cases lipid peroxidation end-products
(LPPs) and Advanced Glycation End Products (AGE) often share
structural homology, proteins modified with LPPs (e.g., HNE, MDA)
may serve as candidate ligands for RAGE. The importance of RAGE
in diabetic pathologies (retinopathy, neuropathy) is an established
and active area of study. In the context of carbonyl stress, RAGE may
serve as a key mediator of carbonyl stress in cardiometabolic disease.
Formation of AGE occurs through the Maillard reaction. PUFA-
derived aldehydes contribute in the conversion of the unstable Schiff
Base intermediate in an irreversible rearrangement reaction to a
stable Amadori product [39-41]. Therefore in conditions of elevated
carbonyl stress, it is plausible that increased cross-linking of Amadori
products would shift the dynamic equilibrium even more in favor of
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Box 1: Drugs Targeting Carbonyl Species.

Edaravone- Edaravone (Norphenazone) is a free radical scavenger developed by Mitsubishi Chemicals [53]. It was identified as a metabolite of Antipyrine
biotransformation. Its mechanism of action is the inhibition of lipoperoxide 15-HPETE and it was shown to prevent membrane peroxidation [54,55]. It reacts non-
selectively with carbonyls and is a particularly efficient scavenger of a, - unsaturated aldehydes [56]. In a clinical pilot study of 80 patients, Edaravone reduced infarct
size, improved ejection fraction and decreased rates of cardiovascular events in long term follow up studies [57,58] .

Aminoquanidine- Aminoguanidine is highly nucleophilic and is thought to prevent protein carbonylation by reacting with Amadori intermediates thus preventing the
formation of the final end product [59]. Furthermore, aminoguanidine inhibits enzymes such as nitric oxide synthases [60]. Aminoguanidine has been shown to reduce
lipid peroxidation in animal models.

Hydralazine-As a prototype of pthalazine drugs, hydralazine has a strongly nucleophilic properties of the terminal nitrogen. Relatively low amounts of hydralazine
inhibit carbonylation of proteins [61].

Alagebrium (ALT-711) - Alagebrium belongs the class of Thiazolium compounds. These compounds break the covalent linkages formed between AGEs and
proteins. In some experimental models it has been shown to reduce cardiac AGE deposition and stiffness [52,62,63].

Pyridoxamine and other vitamin B6 related compounds- the maintenance of the cellular glutathione pool is thought to be the main mechanism of action of the B6
related compounds in the prevention of lipid peroxidation [52].

Carnosine- Carnosine is an endogenous dipeptide present in high concentrations in muscle. It is a potent antioxidant and is often used as an over the counter
supplement. It has no direct scavenging of peroxides or oxygen radicals, rather it reacts with carbonyl derivatives. However, in vivo it is rapidly hydrolyzed by serum
carnosinase and this is a great hindrance to its therapeudic potential. D-carnosine (B-alanylhistidine) is the isomer of carnosine. In a pilot study in Zucker obese mice
it reduced dyslipidaemia and improved renal function [64]. D-carnosine has low bio- availability and this has been a significant limitation to the progress with this

compound. However, development of promising novel analogues is in advanced stages [56,61,65].

the formation AGE according to Le Chatelier’s principle. This would,
in theory, increase the concentration of RAGE ligand.

RAGE signaling activates two key pathways relevant to cardiac
remodeling [42,43], and increased localized RAGE tissue expression
and activation may be viewed as a form of localized ‘metabolic
memory through which previous insults are sustained through
lingering signals [36]. RAGE gene expression is regulated by the
nuclear factor kappa-light-chain-enhancer of activated B cells (NFxB)
transcription factor [36]. Conversely, NFkB is also activated by
RAGE signaling. The RAGE/ NF«B axis is unique in that it typically
overwhelms endogenous auto- regulatory feedback inhibition
loops. In other words, once RAGE switches NFkB on, it is difficult
to switch off. Carbonyl stress may contribute to chronic low grade
inflammation through this mechanism [44]. Chronic low grade
inflammation is a mechanism that underlies many diseases associated
with metabolic syndrome [45]. The cyclic pattern of RAGE/ NF-kB
activation is consistent with these observations. This may explain,
in part, why deterioration of cardiac function persists even after
onset of anti-hyperglycemic therapy. Interestingly, treatment with
the antioxidant selenium, which induces the expression of many
glutathione-dependent antioxidant enzymes, has been shown to
reduce both RAGE expression and NF-kB activation in diabetic rats
[46].

RAGE is also a well-known activator of the TGF-p pathway
[39,45,47-49]. The TGEF-P proteins are pleiotropic and have been
implicated in diverse mechanisms which include cell differentiation
and proliferation. TGF-p receptors type I and II (TGFPRI and
TGEPRII) are present in virtually all mammalian cells. TGF-f1, the
major isoform in heart, is expressed in cardiac fibroblasts and cardiac
myocytes (CMs) and stimulates transformation to myofibroblasts
and proliferation, as well as ECM production. Active TGF-f1 binds
membrane receptors that activate downstream signaling molecules
Smad, and Smad,, which are phosphorylated on the C-terminal serine
residues. Phosphorylated Smad, and Smad, (pSmad, and pSmad,)
bind to Smad, and translocate to the nucleus. The Smad complex
then binds to response elements in the promoter regions of the ECM
genes and activates pro-fibrogenic factors by up-regulating gene
transcription [50]. TGF-f increases the abundance of mRNA for
collagen types I and III in the whole heart and enhances collagen type
L. Models of TGFB1 overexpression in mice suggest that Smad, is the
isoform involved in cardiac remodeling involving hypertrophy and

fibrosis [45,47,48]. In human fibroblasts, HNE suppresses the TGF-
B mediated production of elastin which compromises ventricular
elasticity [51].

Current pharmacologic therapies and future directions

Relatively few studies have tested compounds that target lipid
peroxidation and or neutralize LPPs. From a pharmco-chemical
standpoint, viable drugs need to be sufficiently lipophilic in order
to enter cellular compartments, as well as nucleophilic enough for
carbonyl species to preferentially react with it, or alternatively break
the covalent bond formed. It is imperative that the drug is only
moderately reactive (which would be selectively beneficial in obese/
diabetic patients) since many groups have demonstrated that ‘over-
scavenging’ can potentially interrupt the normal redox cell signaling
pathways and can be detrimental to health. A brief description of
drugs that have been explored in this capacity is provided below
in Box 1 with information pertinent to cardiometabolic disease
included where available. In addition, other compounds relevant to
this discussion but not included in this table include Angiotensin
converting enzyme inhibitors, AT1 angiotensin receptor inhibitors,
N-acetyl cysteine and antioxidants such as Tocopherol-a and
resveratrol [52].

In conclusion, the available data on the role of carbonyl species in
the type of cardiac remodeling known to occur with obesity/diabetes
is limited but rapidly growing. An increase in knowledge of the
underlying mechanisms of LPP formation and the consequences of
increased protein carbonylation in the heart will be greatly beneficial
to healthcare providers as this would lead to improvements in
preventative and current treatment strategies for this condition, and
accelerate the development of novel therapeutics.
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