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Abstract

Phosphorylation of G-protein coupled receptors (GPCRs) is known as the 
major regulator of sequestration and internalization of these receptors. Several 
GPCRs have subtypes differing appreciably in internalization rates, which 
can be importantly related to phosphorylation status of the subtypes. Agents 
affecting activity of protein kinases and phosphatases could then differentially 
influence internalization rates for the subtypes. Insulin, as abundant and 
physiologically pre-eminent protein kinase activator, may stimulate intake of 
most GPCRs through activation of numerous phosphorylation cascades, with 
preference for the slowly internalized subtypes. This indeed can be shown with 
the neuropeptide Y (NPY) Y2 receptor. The intake of this receptor is more than 
doubled by insulin, while the rate for the fast-internalizing NPY Y1 receptor is 
increased by insulin less than 20%.  Phosphorylation changes triggered by 
insulin could be of major importance in signaling by less dynamic GPCRs, 
affecting multiple aspects of their pharmacology and pathophysiology. 
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Surveys
Among insulin-like factors, pre-eminence of insulin would be 

based on higher plasma levels enabling a larger volume of interaction 
with receptors than is attained by insulin growth factor I (IGF-I) and 
insulin growth factor II (IGF-II). Plasma insulin is essentially free 
[7], while IGF-I and IGF-II are largely protein-bound [8].  Similar 
could be expected for most growth factors that work through tyrosine 
protein kinase receptors. This relates to much weaker ionic character 
and to interchain disulfides of insulin chains (Table 1 and Figure 1), 
and the resulting much lower general affinity for proteins. Due to 
double disulfide bonds between chains A and B, the few ionic residues 
in insulin are either internally electrostatically engaged, or isolated 
(Figure 1). The chain A acidic sector via the 31-96 (using the proinsulin 
numbering) disulfide is facing the basic sector of chain B, leading to 
internal electrostatic matching. The two disulfides also would reduce 
access to Glu31 in B and Glu106 in A chain. The C-terminus of chain B 
contains a counterion “switch”  Glu45Arg46 , and Lys53 which is used 
in insulin oligomerization (see [9]).  IGF-I, IGF-II and epidermal 
growth factor (EGF) have no covalently bound subunits, and their 
homoionic sectors (which are more prominent than those of insulin) 
are less internally neutralized, allowing much larger interaction with 
plasma proteins. Free-form plasma levels of these peptides appear 
to be below that of insulin  by an order of magnitude or more. The 
use of abundantly available insulin thus should allow for a copious 
ground layer of phosphorylation events. Insulin binding to either its 
own receptor or to IGF receptors is much weaker than the binding of 
IGF-I or IGF-II [10,11]. Additional interactive features (such as lectin 
complement of IGF-IIR) also may reduce the competitive binding of 
insulin to IGF receptors. The low affinity of insulin binding would 
also work to reduce receptor internalization and then also the losses 
related to cycling. 

Abbreviations
ADAM:  A Disintegrin And Metalloproteinase; AT: Angiotensin; 

EGF: Epidermal Growth Factor; bFGF: Basic Fibroblast Growth 
Factor; GPCR: G-Protein Coupled Receptor; IGF-I: Insulin-Like 
Growth Factor 1; IGF-II: Insulin-Like Growth Factor II; NPY: 
Neuropeptide Y; PYY: Peptide YY; R: Receptor; VEGF: Vascular 
Endothelial Growth Factor

Introduction
With G-protein coupling receptors (GPCRs), internalization 

is a ubiquitous process which achieves the twin results of signal 
termination and removal of the receptor-attached agonist. A limited 
constitutive uptake of ligand-free, or uptake of heterologous ligand-
propelled receptor may also occur. The uptake of either the receptor 
or the agonist in some cases could be followed by an intracellular re-
use in signaling, or egress by reverse endocytosis (for insulin see [1,2]. 
However, the internalized receptor appears to be mostly recycled to 
the plasma membrane, and peptidic agonists typically are degraded. 

Several peptidic agonist-driven GPCRs have subtypes that 
differ considerably in rates of agonist-induced internalization. The 
slowly internalizing subtypes could owe that status to a variety of 
causes. As an example, strong adhesion to exocellular partners 
causes a slow internalization of the neuropeptide Y  Y2 receptor 
[3]. The slowly internalizing subtypes frequently also have lower 
experimentally proven phosphorylation. This also applies in the 
case of the Y2 receptor which is not readily phosphorylated, as 
different from the neuropeptide Y Y1 receptor which has a plethora 
of easily phosphorylated sites [4]. Internalization of the Y2 receptor 
is considerably accelerated by insulin, while that of the Y1 receptor 
is only marginally affected (see Figure 2). The Y1 receptor also has 
many more high-probability phosphorylation sites as forecast by 
phosphorylation-predicting programs [5,6]. 
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A note concerning methods for studying insulin effects would 
underline the need to adequately control the external insulin 
concentration. In most growth-sustaining media, the rate of external 
peptide degradation by cell monolayers in wells with stationary 
medium is considerable. We find that 300 nM PYY(3-36) is ~56% 
degraded within 24 h by cells in F12/Ham medium with 10% fetal 
bovine serum (and 10% FBS alone produces about 20% degradation 
of PYY(3-36) over that period). The experimental medium obviously 
needs to be refreshed at appropriate intervals (based on  kinetics of 
loss of intact peptide) .

At physiological concentrations (typically reported in the range 
of 30-300 pM [12,13] ) insulin can increase internalization by driving 
the phosphorylation and activation of receptor tyrosine protein 
kinases such as insulin receptor proper [14,15], insulin receptor-like 
receptor Tyr kinases such as IGF-IR [15-17]}and IGF-IIR [18,19], 
and even EGFR [20]. Insulin also forms complexes containing 
insulin receptor, c-src Tyr kinase and Akt Ser/Thr kinase [21]. 
The above receptors can also be unblocked by ADAM proteinases 
[22,23], helping transactivation [24]. This would further initiate 
phosphorylation cascades affecting serine/threonine protein kinases 
(including especially Akt kinase, but also protein kinase C [25,26]). 
This would  result in phosphorylation  of multiple protein classes, 
including platforms, scaffolds and chaperones involved in various 
stages of receptor internalization [27-31]. Another protean long-term 
effect of insulin could be the downregulation of arrestins [32], which 
however requires prolonged exposure to high levels of insulin.

Recruiting of serine / threonine kinases by insulin should go 
through phosphorylating services of tyrosine protein kinases directly 
activated by insulin [21, 25]. Thus, Akt Ser/Thr kinase is activated by 
PI3 kinase, which in turn is activated by receptor tyrosine protein 
kinases including EGFR, basic fibroblast growth factor receptor 
(bFGFR) and vascular endothelial growth factor receptor (VEGFR) 
[33].

The protean aspects of insulin activity would be enhanced at 
higher plasma concentrations of insulin. However, phosphorylation 
of mTORC1 could be accomplished at low nanomolar insulin, with 
little additional increase at order-of-magnitude higher concentrations 
[34]. Other targets respond to much higher insulin concentrations 
[35]. Kinases that act upon intracellular domains of GPCRs could 
respond to a very large range of activating insulin concentrations, 

and in most cases would be activated indirectly, by primary insulin 
responders. The internalization itself also generally depends on 
receptor dephosphorylation  [36,37]. Kinase dephosphorylation 
could also be important in this regard [38].  

Insulin was described as the only hormone required for sustained 
growth of CHO cells in F12 medium [14].  While the cells may 
natively express low densities of the insulin receptor, insulin could 
mainly work through stimulation of non-insulin receptor kinases. 
This may involve distribution of internalized insulin to various 
subcellular systems. At less than 10 nM, insulin stimulates kinase 
activity of mTORC1 complex [34]. Insulin is involved in the basal 
priming of phosphorylation cascades that drive the endocytosis of 
most receptors. As an example, low density lipoprotein turnover 
greatly increases in the presence of only 4 nM insulin [39]. The 
intake selectivity and specificity of insulin is low. Insulin seems to 
enter many cell types rather nonselectively. There is evidence for a 
constitutive, autophosphorylation-independent entry path in CHO 
cells [40]. However, components of the clathrin system clearly aid 
internalization of insulin [41]. 

As seen in Fig. 2, Y1 receptor internalization is not importantly 
driven by insulin in OptiMem medium (graph A). Internalization  of 
the wildtype Y2 receptor was however 2.3-fold larger in OptiMem  
medium, i.e. at 2 µM insulin (graph B). The stimulation of Y2R intake 

Peptide total residues total acidic residues number of homoionic acidic acidic clusters total basic residues number of homoionic basic basic clusters

Insulin B 30 2 2 0 4 4 0

Insulin A 21 2 2 0 0 0 0

IGF-1 70 8 6 0 9 8 0

IGF-2 67 9 8 0 9 6 1

bFGF 146 15 9 0 28 24 1

VEGF A 232 24 13 1 51 50 8

Table 1: Compared homoionic parameters of some agonists of tyrosine protein kinase receptors.

Figure 1: A schematic of insulin molecule. The two internal disulfides link 
cysteines 31- 96 and 43-109 (numbering as in the proinsulin chain).

% of the OM internalization at 10’  

Figure 2: A comparison of internalization of CHO cell-expressed human 
Y1 and Y2 NPY receptors without and with insulin (2 µM). The labeling was 
with 200 pM [125I]peptide YY (PYY). The results are relativized to values in 
OptiMem (OM) medium at 10 min of labeling. Incubation with [125I]PYY was 
for 4 and 10 min at 37 o, starting about 20 min after replacement of the growth 
medium (F12/Ham, 1:1, at 400 µM  geneticin, with 10% fetal bovine serum) 
by F12  or OptiMem medium with 10% fetal bovine serum. A wildtypeY1 
receptor;  B wildtype Y2 receptor; C Y2 receptor with P34D35 > A34A35 mutation. 
The results are averages of 12 samples in three separate experiments.
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in this medium was however much larger with the PD34-35AA mutant 
of the Y2 receptor (graph C), which in CHO cell expressions was 
shown to internalize more readily than the wildtype receptor [42]. 
Human holotransferrin at 10 µM increased Y1 and Y2 internalization 
in either medium by less than 15% (data not shown) . This indicates 
that internalization of these NPY receptors is not constitutive, unlike 
e.g. the internalization of the galanin-2 receptor [43].

High insulin in the medium would produce a very quick saturation 
of any binding sites. The response of the Y2 internalization to insulin 
may however saturate already at low nanomolar insulin, as seen for 
internalization of EGF and other growth factor receptors driven by 
insulin. Responses to high inputs of insulin could even be linked 
to activation of protein  synthesis [44]. However, this would not be 
important in short-term responses that we have followed. Insulin 
downregulates EGF receptors at ~2 µM [45], and associates with 
them at subnanomolar inputs. Clusters of insulin-like growth factor 
receptors, e.g. IGFR-II, could both inhibit and stimulate transducers, 
depending on neighboring hydrophobic clusters [46]. 

Homoionic sectors are the most likely to interact with opposing 
charge tracts of binding proteins, including receptors [47], and also 
contain most of basic amino acid residues in all agonists compared 
in Table 1. As seen in the Table,  among short agonists only IGF-II 
has an ionic cluster, while basic clusters are prominent in VEGF-A. 
IGF-I and IGF-II have larger homoionic complements than insulin, 
and should bind counterpart motifs in other proteins (and especially 
in their specific receptors) at a much higher affinity. This of course is 
even more applicable to the long growth factors. 

To compare degree of phosphorylation and rate of internalization 
of GPCRs, we used predictions  in NetPhos program [5] rather 
than the phosphorylation values reported in literature, since the 
experimental conditions producing in situ phosphorylation in many 
cases differ dramatically, as does the phosphorylation of the same 
receptor followed by different methods. The upper six pairs of GPCRs 
in Table 2 are known to strongly differ in the rates of internalization for 
expressions in the same cell type, the first pair member internalizing  
faster. Differences for two pairs at the bottom are known to exist, 
but have not been established in appropriate comparisons. As seen 
in the Table, five of the six confirmed pairs also differ greatly in 
the number of highly probable intracellular phosphorylation sites, 
the faster-internalizing member having many more such sites. The 
slower member might in some or all cases get accelerated by insulin 
significantly more than the faster, as we observe for the Y2R compared 
with the Y1R. However, internalization obviously does not depend 
on phosphorylation alone. The two angiotensin receptors have very 
similar predicted (Table 2) and observed [53] phosphorylation. 
However, the C-terminal tail of angiotensin-2 receptor (AT2R) does 
not have homoionic clusters and cannot interact with β-arrestin [54], 
which greatly impairs the intake  of this receptor.

Discussion/Conclusion
Insulin-responding receptors could phosphorylate either the 

kinases or the chaperones (such as arrestins [55]) that could further 
act in phosphorylation of the intracellular domains of GPCRs to help 
internalization of slow-intake receptors, such as the Y2 receptor. 
However, phosphorylation of the intracellular domains of GPCRs, 
which in most cases seems to be significantly implemented, is not 

necessarily critical. An accelerated clearance can be obtained by 
interaction of phosphorylated platforms /partners and basic clusters 
in intracellular  domains of GPCRs. 

Any kinase phosphorylation induced by insulin may have little 
effect on readily phosphorylated receptors (e.g. The Y1 receptor). 
Direct phosphorylation of GPCR intracellular domains by the 
insulin receptor would depend on spatial proximity of the respective 
domains, and with most receptors with peptidic agonists (which  
generally have short intracellular loops) could be confined to parts of 
GPCR “tails” past Helix 8.

The intake of the slowly internalizing receptors could be, as we 
find for the Y2 receptor, strongly stimulated by high insulin compared 
to the normally rapidly internalized GPCRs (in the case of the Y2 
receptor, the Y1 receptor). Insulin should be acting as a mass action-
linked GPCR protein kinase mobilizer. The high concentration of 
insulin in a medium would provide a very fast kinase mobilization, 
and likely lead to depletion of the Y2 receptor  (or other insulin-
sensitive GPCRs) over a prolonged treatment [32,56,57]. This can 
be expected in hyperinsulinemic states, and may also affect GPCRs 
that have fast internalization in normoinsulinemic conditions.  Any 
prolonged elevations of plasma insulin may broadly affect levels of 
many GPCRs, and again especially those with physiologically low 
internalization rates. This subject should get attention in clinical 
contexts.
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