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Abstract

Reusing cooking oil in food preparation, especially during deep-frying, is a 
common practice to save costs. Repeated heating of the oil accelerates oxidative 
degradation of lipids, forming hazardous reactive oxygen species and depleting 
the natural antioxidant contents of the cooking oil. Long-term ingestion of foods 
prepared using reheated oil could severely compromise one’s antioxidant 
defense network, leading to pathologies such as hypertension, diabetes and 
vascular inflammation. The detrimental effects of reheated oil consumption 
extend beyond mere oxidative assault to cellular antioxidant shield. In this 
review, we have examined the experimental and clinical effects related to the 
intake of reheated oil on antioxidant contents, membrane lipid peroxidation and 
endothelial function. Understanding the mechanisms underlying the pathology 
associated with intake of repeatedly heated oil will help to set a reference for 
assessing the safety of cooking oil. Finally, considering the potential hazard of 
repeatedly heating oil, this article aims to further increase awareness of the 
general public regarding the health risks associated with these oils.

Keywords: Antioxidant; Endothelial dysfunction; Heating; Lipid peroxidation; 
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literature on the harmful effects of repeatedly heated vegetable oils 
on antioxidant activity, lipid peroxidation and endothelial function.

Heating Process of Vegetable Oil
During the frying process, cooking oil is exposed to an extremely 

high temperature in the presence of air and moisture. Under such 
conditions, a complex series of chemical reactions takes place, 
resulting in loss of both quality and nutritional values of the cooking 
oil. Repeatedly heating the cooking oils initiates a series of chemical 
reactions, modifying the fat constituents of cooking oil through 
oxidation, hydrolysis, polymerization, and isomerization, eventually 
resulting in lipid peroxidation [13]. Lipid peroxidation generates a 
wide spectrum of volatile or non-volatile components, including free 
fatty acids, alcohols, aldehydes, ketones, hydrocarbons, trans isomers, 
cyclic and epoxy compounds [14,15]. As a result, when the same 
cooking oil is reused excessively, the chemical reactions enhance 
foaming, darkening of oil color, increased viscosity, and off-flavor. 
Hence, repeated heating of the oil can lead to degradation of the 
cooking oil, both chemically and physically.

Although the chemical reactions provoked by thermal treatment 
are complex, they interact with and affect each other. Exposure to 
oxygen at high temperatures leads to oxidation of triacylglycerides, 
which generates hydroperoxides. Hydroperoxides are unstable 
intermediates and rapidly break down into reactive free radicals 
to initiate autoxidation, generally through a three-phase process 
(initiation, propagation and termination). Autoxidation is therefore 
suggested to be a principal mechanism of lipid peroxidation. The 
extreme heat during frying is the main initiator for autoxidation, in 
addition to other factors such as photonic agents, ionizing radiation, 
free radicals and chemical impacts. The initiation phase involves 
homolytic cleavage of hydrogen bonds, particularly those in the 

Introduction
According to the United States Department of Agriculture, 168.85 

million metric tons of vegetable oils are estimated to be produced 
globally at the end of 2013-2014 season [1]. World vegetable oil 
production has increased over the past decades, especially production 
of palm oil, soybean oil, rapeseed oil (canola) and sunflower oil (Table 
1). Vegetable oils are regarded as the healthier choice relative to 
animal fats in view of their unsaturated fatty acid and cholesterol-
free contents. In this fast-paced society, frying remains as one of the 
popular methods in food preparation. Consumption of ready-made 
deep-fried food is high, especially in developing countries. Highly 
oxidized fatty acids are consumed through intake of these fried 
foods. Edible vegetable oil is the major ingredient in these fried food 
products. Therefore, the cost of the oil becomes the most important 
factor to be considered in terms of economy. As a result, vegetable oil 
is often to be repeatedly heated to ensure cost effectiveness. The oil is 
thus reused until it is discarded and replaced with fresh oil.

When frying oil is heated at high temperatures, hydroperoxides 
and aldehydes are formed. These toxic products are absorbed by the 
food, and eventually into the gastrointestinal tract and thereafter enter 
the systemic circulation after ingestion [2]. We recently reported 
that intake of repeatedly heated palm and soybean oils significantly 
increased the blood pressure in experimental animals [3,4]. In 
addition, Soriguer et al. [5] reported that consumption of repeatedly 
heated frying oils is associated with increased risk of hypertension. 
The practice of reusing frying oil leads to detrimental health risks such 
as histological abnormalities [6-9] and alterations in genetic material 
[10-12]. Free radicals generated during the frying process could 
damage membrane lipids through lipid peroxidation, subsequently 
leading to oxidative stress. This review examines the current 
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α-position relative to the double bond of the fatty acid chain, to form 
alkyl radicals (L1·; reaction 1).

[L1H → L1· + H·]			   (1)

L1· radicals are highly unstable intermediates. They stabilize 
themselves by reacting with oxygen to generate peroxyradicals 
(L1OO·; reaction 2). 

[L1· + 3O2 → L1OO·]			   (2)

The resulting peroxyradical then abstracts a hydrogen from other 
unsaturated fatty acid (L2H) to form a hydroperoxide (L1OOH) and 
another alkyl radical (L2·; reaction 3), thus replenishing the reaction 
(1). This phase is called propagation. It propagates sustainably at a 
high rate. 

[L1OO· + L2H → L1OOH + L2·]		  (3)

Th e propagation phases continue until a maximum concentration 
of hydroperoxide is reached, at which time point the collision between 
the individual moieties becomes more frequent. This stage marks the 
onset of the termination phase, in which the double bond adjacent 
to the hydroperoxyl group is broken down to yield hydrocarbons, 
aldehydes, alcohols and ketones (reaction 4).

[L2OO· + L3OO· → non-radical compounds]	 (4)

Hydrolysis, another key pathway of lipid peroxidation, is initiated 
by water vapor found in food and the atmosphere. Activated water 
molecules break down the esterified bonds of triacylglycerides 
to generate glycerol, free fatty acids, monoacylglycerides and 
diacylglycerides. The breakdown products in turn accelerate 
the hydrolysis rate. At the same time, high temperatures induce 
polymerization of the hydrolysis products to form high-molecular-
weight cyclic fatty acid monomers, dimers or oligomers, which 
subsequently speeds up the hydrolytic reaction.

Effect of reheated vegetable oils on antioxidant activity
Excessive generation of reactive oxygen species (ROS), coupled 

with a reduced availability of antioxidants, predisposes the cells to 

a state of oxidative stress. ROS are highly reactive and unstable in 
nature. Antioxidants present in oil inhibit oxidative deterioration in 
vegetable oils during the frying process and scavenge free radicals and 
ROS. Vegetable oils are thus important in the functional and sensory 
aspect of food products. The oil acts as a medium for heat transfer and 
as a carrier for the fat-soluble vitamins A, D, E, and K.

Enzymatic and non-enzymatic antioxidants ensure the balance 
of ROS level and repair oxidative cellular damage. Enzymatic 
antioxidants such as superoxide dismustase, catalase and glutathione 
peroxidase, which are directly involved in the neutralization of ROS, 
are known as the first line defense system [16,17]. On the other hand, 
the second line of defense is represented by non-enzymatic radical-
scavenging antioxidants, which include ascorbic acid, carotenoids, 
tocopherols and plant phytochemicals such as phenolic compounds 
(polyphenols) that inhibit the initiation of the oxidation chain and 
prevent chain propagation [18,19]. Natural polyphenols include 
phenolic acids and flavonoids [20]. These antioxidants protect cells 
and biomacromolecules against the harmful effects of free radicals 
and prevent oxidative degradation. 

Frying remains as one of the most popular culinary methods 
globally, for both industrial and domestic food preparation 
procedures. Organoleptic and sensorial properties of fried food 
products, such as juicy taste, nice flavor, crispy texture and brownish 
color, are largely desired and relished by consumers [21]. However, 
reheating of the vegetable oil at high temperatures leads to oxidation, 
which produces rancid odor and flavor [22,23]. Subsequently, the 
oxidation process reduces both the nutritional value as well as the 
safety of fried food products through the formation of secondary 
products due to peroxidation of polyunsaturated fatty acids (PUFAs) 
[24,25]. The extent of oil degradation is measured by the peroxide 
index. The peroxide index evaluates the amount of peroxides formed 
in the vegetable oil during the oxidation process. The extent of 
oxidation rancidity is influenced by the number of frying episodes. 
The more frequently the vegetable oil is reheated, the higher is the 
peroxide index [26,27]. The chemical stability of the frying oil is 

Vegetable 
oil

World 
consumption

(million metric 
tons)1

Fatty acid
(g/100g)2

Study Design Key finding
SFA MUFA PUFA

Palm oil 56.02 49.30 37.00 9.30 Ladeia et al. [62] Quasi-experiment A mild, triacylglycerol-reducing effect in young and healthy subjects

Soybean oil 44.17 15.65 22.78 57.74
Hassan and 

Abdel-Wahhab 
[63]

Experimental
Restoration of lipid profile, cardiac biomarkers, inflammatory 

and redox status, suggesting protection against cardiovascular 
disorders associated with estrogen deficiency

Rapeseed 
oil 24.06 7.37 63.28 28.14 Gillingham et 

al. [64]

Single-blind, 
randomized, crossover, 

controlled

Serum total cholesterol and LDL cholesterol are lowered compared 
to Western diet

Sunflower 
seed oil 14.07 10.10 45.40 40.10 Binkoski et al. 

[65]

Double-blind, 
randomized, crossover, 

controlled

Total and LDL cholesterol levels are reduced compared to average 
American diet

Peanut oil 5.56 16.90 46.20 32.00 Stephens et al. 
[66] Experimental Aortic total cholesterol and cholesteryl ester are reduced, 

demonstrating an anti-atherosclerotic property

Coconut oil 3.82 86.50 5.80 1.800 Mendis et al. [67] Randomized, controlled Replacement or reducing the oil intake is associated with the 
decrease in mean cholesterol levels

Olive oil 3.05 13.81 72.96 10.52 Buil-Cosiales et 
al. [68] Retrospective An inverse association between oil consumption and carotid intima-

media thickness, suggesting an anti-atherosclerotic effect

Table 1: World consumption, fatty acid composition and CVD risk factor of major vegetable oils.

Abbreviations are:  CVD: Cardiovascular disease; SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; LDL: low-density 
lipoprotein
1United States Department of Agriculture. 2013. Oilseeds: world markets and trade.
2United States Department of Agriculture. 2013. National Nutrient Database for Standard Reference, Release 26.
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influenced by peroxide formation. A higher peroxide value indicates 
lower chemical stability of the oil. 

Increasing the heating temperature and duration may alter the 
antioxidant activity in the vegetable oils [13]. Heating causes changes 
in the physical and chemical characteristics of the oils. Repeatedly 
heating the oil leads to the degradation in the oil quality, with 
formation of more saturated compounds such as hydroperoxides, 
monomers, dimers, trimers and high-molecular-weight compounds 
along with less proportion of unsaturated fats. Lipid peroxidation 
may be initially prevented by antioxidants. However, repeated 
heating eventually decreases the antioxidant content of the oil. As a 
consequence, the remaining depleted antioxidants in the oil will not 
be capable of exerting any protective effect against free radicals and 
oxidative damage.

Endogenous antioxidants contained in vegetable oil provide a 
natural resistance to oxidative deterioration. The antioxidant activity 
of the phenolic extract of virgin olive oil was found to be very low 
after the sixth frying process [28]. Cooking oil is more susceptible 
to oxidation following repeated heating due to the increased 
concentrations of polar compounds, and oxidized triacylglycerol 
monomers, dimers and polymers [28]. Similarly, total loss of 
antioxidant activity due to deep-fat frying after the 12th frying 
processes has been reported [28]. Vitamin E consists of tocopherols 
and tocotrienols isomers, which are the major antioxidants of 
vegetable oils [29]. Adam et al. [30] reported that reheating palm and 
soybean oils significantly reduced the content of the various vitamin E 
fractions. The stability of the vitamin E isomers varies during heating 
because it depends on the type of oil and the content of vitamin E 
in those edible oils. Palm oil is rich in tocopherols and tocotrienols. 
Tocotrienol has been exhibited to have more potent antioxidant 
activity [31,32] than tocopherol, which is found in soybean oils. In 
addition, soybean oil is high in PUFA content compared to palm oil, 
which has approximately 1:1 ratio of saturated and unsaturated fatty 
acids with lower PUFA levels. Hence, soybean oil is more prone to 
oxidation than palm oil following repeated heating [33].

Deterioration of natural antioxidant such as phenolic compounds 
and tocopherols is observed when virgin olive oil and sunflower oil 
are heated repeatedly [34]. Evuen et al. [35] conducted a study to 
investigate the toxicological effects of heating of vegetable oils on their 
natural antioxidant levels. The oils were repeatedly heated for three 
consecutive days. Refined, deodorized palm olein, groundnut oil, 
congealed and locally made vegetable oil samples showed a reduction 
in alpha-tocopherol and beta-carotene levels as the frying oils were 
repeatedly heated [35]. The effect of antioxidants on the stability of 
rapeseed oil during heating at 80°C and during deep-fat frying were 
evaluated by determination of the production of polymers, its peroxide 
index and tocopherol content [36]. Repeated heating reduced the 
stability of the rapeseed oil, with a lowering of the tocopherol content 
and an elevation in the levels of lipid peroxidation products. A study 
carried out by Koh et al. [37] demonstrated that with increased frying 
cycles, antioxidant activities reduced significantly in palm oil and 
rice bran oil. Tocotrienol and tocopherol concentrations decreased 
in both vegetable oils. However, it was reported that tocotrienol is 
more susceptible to degradation when compared to tocopherol. 
Both vitamin E homologues are potent antioxidants. Nevertheless, 
tocotrienol was shown to possess greater antioxidant capacity [31,32]. 

Hence, it might be less stable and be oxidized first to protect the other 
antioxidant, i.e. tocopherol.

Effect of reheated vegetable oils on lipid peroxidation
Excessive free radicals cause alterations in the redox state of human 

body, leading to lipid peroxidation. Although lipid peroxidation is a 
natural process, unabated, it is a crucial step in basic deteriorative 
mechanisms that include cell injury, enzyme damage and nucleic acid 
mutagenesis [38,39]. Lipid peroxidation is one of the key mechanisms 
causing oxidative modification of physiologically important lipids in 
cell membranes. Lipids, particularly PUFAs, are key targets of this 
modification because they contain oxidizable double bonds [40]. The 
basis for this is the hydrogen adhering to the carbon atom between 
two adjacent double bonds is the weakest bond in the fatty acid, which 
makes it susceptible to oxidative attack. Unstable free radicals readily 
stabilize themselves by abstracting electrons from membrane lipids to 
initiate a self-propagating chain reaction. Structural rearrangement 
of the lipids ensues, and the rate of bond cleavage is greatly increased 
until the molecule is stabilized.

Oxidative damage to lipid architectures can ultimately lead to 
disorganization and dysfunction of, as well as damage to membranes, 
enzymes and proteins [41]. Subsequently, lipid peroxidation impairs 
the membrane functions, inactivates membrane-bound receptors 
or enzymes, and disturbs ions permeability and fluidity, which 
eventually leads to membrane rupture [42]. Moreover, reactive 
electrophilic end products of such lipid peroxidation reactions, 
namely α- and β-aldehydes are also detrimental to cell viability 
[43]. Lipid peroxidation provokes alteration in gene expression and 
immunologic responses [44]. Oxidative damage may accumulate over 
time, thereby contributing to cell injury and pathologies, including 
cardiovascular diseases [45,46] and inflammatory disorders [47,48].

As various oxidative reactions are initiated by thermal treatment, 
the antioxidant defense system of the body appears to be actively 
challenged by the free radicals present in reheated oils [49]. A previous 
study has found a higher content of oxidized compounds in the body 
fat of rats fed oxidized soybean oil [50], suggesting the important 
role of reheated oil in altering the redox steady state. Depletion of the 
natural antioxidants, such as phenolic compounds [51], tocopherols 
and tocotrienols [30] of cooking oil further renders cell membranes 
vulnerable to lipid peroxidation. Moreover, some end products of oil 
deterioration such as ketones, alcohols and aldehydes are cytotoxic, 
the ingestion of reheated oil may lead to cell necrosis and apoptosis 
[52].

Various techniques are available for the detection and 
measurement of lipid peroxidation, which include measurement 
of unsaturated fatty acids levels, estimation of conjugated dienes in 
lipoprotein fractions, quantification of lipid hydroperoxide and F2-
isoprostane radioimmunoassay. The thiobarbituric acid reactive 
substances (TBARS) assay is most commonly used to quantitate 
malondialdehyde, which is the end product of lipid peroxidation. 
Generally, consumption of reheated oil increases lipid peroxidation 
in both animal and human models. Adam et al. [53] found that 
ingestion of reheated soybean oil exacerbated the lipid peroxidation 
induced during the post-menopausal stage in rats. The result suggests 
that thermal treatment generates free radicals in oil, which enhance 
oxidative stress in the animals. Similarly, post-prandial oxidative 



Austin J Pharmacol Ther 3(2): id1068 (2015)  - Page - 04

Mustafa MR Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

stress after the intake of reheated oil has also been reported in human 
subjects [54]. Increased oxidative stress in human may lead to lipid 
peroxidation, which subsequently impairs endothelial function in 
the regulation of vasomotion [55]. Impacts of reheated oil on lipid 
peroxidation have been documented in Table 2. All of these results 
demonstrate that thermally oxidative modification of the fatty 
acid composition in diet may increase cell susceptibility to lipid 
peroxidation.

Effect of reheated vegetable oils on endothelial function
In addition to being the physical barrier between vessel wall and 

the blood, the endothelium is an important structure that possesses 

both endocrine and paracrine functions. Furthermore, the endothelial 
cell is able to respond to physical and chemical signals that regulate 
vascular tone, cellular adhesion, platelet aggregation, smooth muscle 
cell proliferation and inflammation [56,57]. Vasomotion by the 
endothelium is responsible for the balance of tissue oxygen supply 
and metabolic demand by regulation of vascular tone and diameter, in 
addition to being involved in the remodeling of vascular structure and 
long-term organ perfusion [58]. Measurement of endothelial function 
has become an important means to detect arterial abnormalities and 
represents an early marker of cardiovascular diseases.

When exposed to deep-frying temperatures, fatty acids in the 
vegetable cooking oil undergo chemical configurational changes from 
cis to trans isomers. In addition, generation of oxidized products due 
to the reheating process leads to a deleterious effect on the vascular 
function. Nitric oxide (NO), which is also known as endothelium-
derived relaxing factor, is released by the endothelium to regulate 
homeostasis of the vascular system to preserve its integrity. NO 
causes vascular smooth muscle relaxation through cyclic guonosine 
monophosphate. Endothelial dysfunction is associated with abnormal 
endothelium-dependent relaxation. Previous research findings in our 
laboratory clearly showed that repeatedly heated palm oil and soybean 
oil cause impairment in endothelium-dependent vasorelaxations and 
augmentation of contractile responses in adult male Sprague-Dawley 
rats [33]. Similarly, it has been documented that long-term intake of 
thermally oxidized palm oil alters the function of aorta isolated from 
the rat [59]. This indicates an increase in vascular reactivity, which 
would contribute to increasing vascular tone, eventually elevates 
blood pressure levels. Similarly, intake of repeatedly heated oil was 
observed to produce harmful effects on endothelial function in 
normal young healthy volunteers when they were given heated olive, 
soybean or palm oils that had undergone either 10 or 20 deep-frying 
rounds [60].

Study Reheated oil Diet formulation Subject Duration Results

Corcos et al. [69] Soybean 15% of oil in diet Young and aging rats 10, 90, 180 and 365 
days

TBARS ↑ (with earlier effects in 
aging rats)

Hageman et al. [70]
Coconut

PUFA-rich vegetable frying 
oil

10% w/w of oil in diet Male rats, inbred 
strains 4 weeks TBARS slightly ↑ by PUFA-rich oil; ↕ 

by coconut oil

Staprãns et al. [71] Oxidized vitamin E-depleted 
corn oil 1 g/kg body weight Male volunteers An 8-hour period TBARS ↑

Conjugated diene in chylomicrons ↑

Staprãns et al. [72] Vitamin E-depleted corn oil 5% of oil in 0.25% 
cholesterol diet

New Zealand white 
rabbits 12 – 14 weeks Conjugated diene in β-VLDL ↑

Eder [73] A mixture of lard and 
safflower oil (2:1 w/w) 10% of oil in diet Male Sprague-Dawley 

rats 35 days Total MUFA/SFA ratio ↓

Quiles et al. [74] Olive
Sunflower 80 g/kg diet Male Wistar rats 8 weeks

TBARS ↑
Hydroperoxides ↑

MUFA ↓ (reheated sunflower only)

Eder et al. [75] A mixture of sunflower and 
lard (1:1 w/w)

100 g/kg oil in semisynthetic 
diet

Male Sprague-Dawley 
rats

8 and 9 weeks Susceptibility of LDL
to copper-induced lipid peroxidation 

↑
Garrido-Polonio et 

al. [76] Sunflower 15 g/100 g diet Male Wistar rats 27 days Liver, serum, HDL, LDL and VLDL-
TBARS ↑

Adam et al. [53] Soybean 15% w/w of oil in 2% 
cholesterol diet

Estrogen-deficient 
rats 16 weeks TBARS ↑

Yen et al. [77] Soybean 10% of oil in diet Male SHR and WKY 
rats 10 weeks TBARS ↑

8-iso-prostaglandin F2α ↑

Leong et al. [27] Palm 15% w/w of oil in diet Male Sprague-Dawley 
rats 6 months TBARS ↑

Table 2: Effect of reheated vegetable oils on lipid peroxidation.

Symbols indicate the following: ↑, increased; ↓, decreased; ↕, no changes
Abbreviations are: HDL: high-density lipoprotein; LDL: low-density lipoprotein; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; SFA: saturated 
fatty acid; SHR: spontaneously hypertensive rat; TBARS:  thiobarbituric acid reactive substances; VLDL: very low-density lipoprotein; w/w: weight/weight; WKY: Wistar-
Kyoto

Figure 1: Repeatedly heated vegetable oil and endothelial dysfunction.
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In a study by Williams et al. [55], ingestion of a meal rich in fat 
previously used for deep-frying in a commercial setting resulted in 
impaired arterial endothelial function in healthy men. Their findings 
suggest that intake of deteriorated products of heated dietary oil may 
contribute to endothelial dysfunction. Plotnick et al. [61] reported 
that pre-treatment with the antioxidant vitamin C and E is able to 
restore endothelial function, suggesting an oxidative mechanism. In 
our earlier studies [3,4], consumption of repeatedly heated vegetable 
oil has been shown to significantly reduce NO levels in rats. Reheating 
of vegetable oil promotes oxidative stress, causing NO sequestration 
and inactivation. The ability of endothelial cells to release NO may be 
down-regulated in the presence of oxidized low-density lipoprotein 
cholesterol and oxidative stress. Peroxynitrite, generated from the 
reaction between NO and ROS, is a potent pro-oxidant that may 
play a role in the development of endothelial dysfunction. Reduced 
endothelium-derived NO bioavailability further enhances contraction 
of vascular smooth muscle. Thus, consumption of repeatedly heated 
vegetable oil leads to endothelial dysfunction (Figure 1). 

Conclusion
Long-term intake of diet comprising reheated vegetable oil leads 

to endothelial dysfunction. Repeatedly heated dietary vegetable oil 
promotes oxidative stress, resulting in NO inactivation and reduced 
bioavailability. Moreover, antioxidant effect of fresh vegetable oil 
against free radicals may be reduced gradually as the oil is repeatedly 
heated. Production of free radicals and reduction of antioxidant and 
vitamin levels eventually lead to oxidative stress. Oxidative stress 
and endothelial dysfunction play pivotal roles in the pathogenesis of 
cardiovascular diseases, which may be controlled by diet modification. 
Ingestion of repeatedly heated vegetable oil should be restricted due 
to the detrimental consequences on health.
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