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Abstract

Along with the rapid development of genetic engineering technology and 
antibody engineering technology, humanized monoclonal antibody has been 
rapidly developed and gradually replaces the rat sourced monoclonal antibody. 
In this paper, we establish two new logarithmically completely monotonic 
functions involving the gamma function according to two preferred interaction 
geometries, necessary and sufficient conditions are presented for one of them to 
be logarithmically completely monotonic. As a consequence, a sharp inequality 
involving the gamma function is deduced to solve the problems of genetically 
engineered antibody.
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successively in sign, that is,

         			   (1.5)

for all xє I and for all n≥ 0 . If inequality (1.5) is strict for all xєI 
and all n≥ 0, then f is said to be strictly completely monotonic.

The classical Bernstein–Widder theorem [6, p. 160, Theorem 12a] 
states that a function f is completely monotonic on (0,∞) if and only 
if it is a Laplace transform of some nonnegative measure µ, that is,

   			   (1.6)

where µ(t) is non-decreasing and the integral converges for 
x > 0. We recall also [7-9] that a positive function f is said to be 
logarithmically completely monotonic on an interval I if f has 
derivatives of all orders on I and

[ ]( )( 1) ln ( ) 0,nn f x− ≥      		   	 (1.7)

for all xєI and for all n≥1 . If inequality (1.7) is strict for all xєI 
and all n≥1, then f is said to be strictly logarithmically completely 
monotonic. The antibody structure will be changed when it binds 
certain target (Figure 2a), i.e.: antigen, receptor. How to describe 

Introduction
Antibodies have been proven to be indispensable tools for 

biomedical applications. Different engineered antibodies have been 
development for various purposes according to the amino acid 
sequence and/or spatial structure of protein (Figure 1). At present, 
it is still difficult to predict the optimal structure of antibodies. 
Topology knowledge can be important in antibody application as well 
as transformation. Theoretically, we can obtain desired antibodies 
by using protein/gene engineering technology. For instance, we 
can transform the Complementarity Determining Region (CDR) to 
promote the affinity of the antibody to antigen. Similarly, we could 
also transform any domain of antibody to make it bind with any 
desired target. Under this vision, topology is a powerful tool to predict 
the structure of protein and it will serve to antibody engineering. Our 
present work tries to explain, and predict, if possible, the change of 
structure, size and function of antibodies as well as their fragments 
from a topological perspective.

For Re (z) > 0 the classical Euler’s gamma function Γ and psi 
(digamma) function Ψ are defined by

( ) ( ) ( )
( )

1

0
,z t z

z t e dt z
z

ψ
∞ − − ′Γ

Γ = =
Γ∫        (1.1)

respectively. The derivatives ( ) ( )n zψ  for n∈N are known as 
polygamma functions.

For Ѱ (z) (see [1]), the following series representations are 
established:
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where γ = 0.577215664901 denotes the Euler’s constant. We 
next recall [2-5] that a function f is said to be completely monotonic 
on an interval I,  if f  has derivatives of all orders on I which alternate 
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Figure 1: Different antibody formats. a: different antibody or engineered 
antibodies; b: different shape of antibody.
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the changes in the view of topology? The following cases will explain 
it in detail. It was proved explicitly in [8] and other articles that a 
logarithmically completely monotonic function must be completely 
monotonic. In [10], G. D. Anderson et al. proved that the function

( ) (ln ( ))g x x x xψ= − 			   (1.8)

is strictly decreasing and strictly convex on (0,∞), with two limits

( ) 1lim ( ) 1, lim
2x x

g x g x
→∞ →∞

= = 			  (1.9)

From (1.9) and the monotonicity of g (x), then the double 
inequalities

1 1ln ( )
2

x x
x x

ψ< − < 			   (1.10)

holds for all x > 0.

In [11, Theorem 1], by using the well-known Binet’s formula, H. 
Alzer generalized the monotonicity and convexity of g (x), that is, the 
function

( )( )( ) lng x x x xα
α ψ= − 		  (1.11)

is strictly completely monotonic on (0,∞) if and only if α≤1.

In [12], D. Kershaw and A. Laforgia proved that the function 
( )1 1/

x
xΓ +     is decreasing on (0,∞) and  ( )1 1/

x
x xΓ +    is 

increasing on (0,∞).  These are equivalent to the function ( )1 1/
x

xΓ +    
being increasing and ( )1 1/ /

x
x xΓ +    being decreasing on (0,∞), 

respectively.

In [[13], Theorem 5], F. Qi and Ch.-p. Chen generalized these 
functions. They obtained the fact that for all x>0 the function   

( ) 1/
1

xrx xΓ +    is strictly increasing for r≥0 and strictly decreasing 
for r ≤ -1, respectively.

After the papain digestion, the remained antibody functional 
part (usually the Fab domain), will be smaller and the structure is 
also changed (Figure 1b). These changes can be revealed vividly using 

topology. Recently [[14], Theorem 1], F. Qi, C.-F Wei and B.-N Guo 
established another excellent result, which states that for given yє 
(-1,∞) and αє(-∞,∞) let
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						      (1.12)

The function (1.12) is logarithmically completely monotonic 
with respect to xє(-y-1,∞) if and only if α≥ max{1,1/(y+1)}; and 
if α≤ min{1,1/2(y+1)}; the reciprocal of the function (1.12) is 
logarithmically completely monotonic with respect to xє (-y-1,∞).

Antibodies occur spontaneously gathering and forming dimer, 
polymer, which will influence their functions (Figure 2b). In antibody 
engineering practice, it urgently needs some measures to overcome 
this difficulty. From topology perspective, we could understand this 
issue as follow. 

Stimulated by the above results, we put forward the function as 
follows: for given y∈ (0,∞)and real number α, let the function fα,y (x) 
defined by

 ( ) ( )
( ) { }
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						      (1.13)

Our first result is contained in the following theorem.

Theorem 1: For the function (1.13), then the following statements 
are true:

 (1) For any given y ≥1, the function (1.13) is strictly logarithmically 
completely monotonic with respect to x∈ (-y,∞)\{0} if and only if α≥1;

(2) For any given 0<y<1, if α≥e-(1-y) /y then the function (1.13) 
is strictly Logarithmically completely monotonic with respect to x є 
(-y,∞)\{0};

(3) For any given y ·0, the reciprocal of the function (1.13) is strictly 

Figure 2a: Model of pH-dependent conformational change of FcRY and 
structures for the FcRY monomer and dimer. a: FcRY has an extended 
conformation at pH 8 (s*= 7.2 S) with no predicted interaction between the 
CysR-FNII domains and the CTLDs. At pH 6 the CysR-FNII region folds 
back and binds to the CTLDs, resulting in a more compact conformation (s*= 
7.9 S) that is able to bind IgY; b: Likely orientations of FcRY and FcRY–IgY 
on a membrane. The two FcRY monomers on the Right are shown in an 
orientation that would allow formation of a 2:1 FcRY–IgY complex.

Figure 2b: Unique Structural Domain in Bovine IgG antibodies and 
application.
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Logarithmically completely monotonic with respect to x є (-y,∞)\{0} if 
and only if II α≥0.

Our second result is presented in the following theorem.

Theorem 2: For any given yє[1,∞), let the function hy (x)be defined 
on (0,∞) by
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∑

		  (1.14)

where γ denotes the Euler’s constant, then the function (1.14) is strictly 
logarithmically completely monotonic with respect to x on (0,∞).

The following corollary can be derived from Theorems 2 
immediately.

Corollary 1: For any given y≥1, the inequality
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∑ 		  (1.15)

holds for all x > 0 .

Lemma
In order to prove our main results, we need the following 

lemmas. It is well known that Bernoulli polynomials Bk(x) and Euler 
polynomials Ek (x) are defined by

0
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respectively. The Bernoulli numbers Bn are denoted by Bn =Bn,(0), 
while the Euler numbers  En are defined by 2nEn(1/2).

In [15,16], the following summation formula is given:
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for any nonnegative integer k , which implies
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In particular, it is known that for all n є N we have
1

2 1 2 20, ( 1) ,n
n n nB B B+
+ = = − 			   (2.5)  

2 1 2 20, ( 1) ,n
n n nE E E+ = = − 			   (2.6) 

And the first few nonzero values are

B0 =0, B1 = - 1
2

, B2 =
1
6

, B4= - 1
30

,

E0 =1, E2 =-1, E4=5

(See [[17], p.804, Chapter23]).

The Bernoulli and Euler numbers and polynomials are generalized 
(see [18-21]).

Lemma 1: (see [22,23]) For real number x > 0 and natural number, 
then
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Remark 1: θ1θ2θ3θ4only depend on natural number m.

Lemma 2: (see [[24-31], p. 107, Lemma 3]) For real number x > 0 
and natural number n, we have
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Lemma 3: (see [1,17]) For real number x > 0 and natural number 
n, we have
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Lemma 4: Let the sequence of functions un (x) for nєN be defined 
on [0, ∞) by
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differentiable on  [0,∞ )and the identity (2.17) holds for  x≥0.  
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The lemma is proved. 

Lemma 5: For 0<a≤1 and real number b, let the function Qa,b (x)    
be defined by 

( ) ( )
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and, by the identities (2.13) and (2.14), (2.23) can be written as 
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It is easy to check that
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Therefore q (t) is strictly increasing [0,∞ ), and then q(t)>q(0) 
=0. The following two cases will complete the proof of Lemma 5.

Case 1: If 0<α≤1≤b, then since q(t)>0 for t>0, we have

( )( ) ( )( )1 1 1 1 ,t tat bt e bt e− −≤ + − ≤ + − 	 (2.26)

which implies  at<(1+bt)(1-e-t), and then P(t)>0for all t>0. From 
(2.24), we know that the inequality (2.20) holds for xє(-b/a,∞) and 
integer n≥2.

Case 2: If,0<a≤b≤1 then we get
( ) ( 1 )tp t b a e bt b−′ = − + + − ≥ 		  (2.27)

( )0, 0, ,tbte t− > ∈ ∞

Therefore P(t) is strictly increasing on (0, ∞), and then 
P(t)>P(0)=0.  

From (2.24), we know that the inequality (2.20) holds for   xє(-
b/a,∞) and integer n≥2.

The lemma is proved.

Proof of Theorems
Proof of Theorem 1

For 0x ≠  and natural number n, taking the logarithmically 

differential into consideration yields
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α
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
< ≥ ≥
< ≥ < <

For kєN.

From (3.1), then simple computation shows that 

( )( )1
,0

lim 0nn
yx

x f xα
+

→
  =  			   (3.13)

for all  nєN and any given yє(0,∞). As a result,

 ( ) ( )22 1
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α
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> ≤ >

< ≥ ≥
< ≥ < <

for all kєNand all x>0.

Therefore, (3.14) and (3.15) imply

( ) ( ) ( )
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if forfixedy
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α
α

α − −

< ≤ >

> ≥ ≥
> ≥ < <

for all nєN and all x>0. Hence, if either α≥e-(1-y)/y for given 0<y<1 
or α≥1 for given y≥1, the function (1.13) is strictly logarithmically 
completely monotonic with respect to x on (0,∞), and if α≤0 for given 
y>0, so is the reciprocal of the function (1.13). On the other hand, if 
xє(-y,0) for any giveny>0, then (3.10) implies 

( ) ( ){ }1
,

nn
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+ ′
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
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for nєN.

 In view of (3.13), we can conclude that 

( ) ( )1
,

nn
yx f xα
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				    (3.18)

( )1

0, 0 0
0, 1 1

0, / 0 1y

if forfixedy
if forfixedy

if e yforfixed y

α
α

α − −

> ≤ >

< ≥ ≥
< ≥ < <
For nєN. It is obvious that (3.18) is equivalent to that (3.14) and 

(3.15) hold for any given y>0 and xє(-y,0). Therefore, it is easy to 
prove similarly that (3.16) is also valid on xє(-y,0) for any given y>0 
and all nєN.  The amino acid of antibody/protein possesses different 
preferences. Thus we can conduct site-directed mutation to promote 
the affinity and/or hydrophilic with the prediction of topology. For 
example, bovine antibodies have an unusual structure comprising a 
β-strand ‘stalk’ domain and a disulphide-bonded ‘knob’ domain in 
CDR3 (Figure 2). Attempts have been made to utilize such amino 
acid preference for antibody drug development.

Consequently, the function (1.13) is the same logarithmically 
completely monotonicity on (-y,0) as on (0,∞), that is, if either α≥e-(1-

y)/y for given0<y<1 or α≥1for given y≥1, the function (1.13) is strictly 
logarithmically completely monotonic with respect to x on (-y,0), and 
if α≤0forgiven  y>0, so is the reciprocal of the function (1.13).

Conversely, we assume that the reciprocal of the function (1.13) 
is strictly logarithmically completely monotonic on (-y,∞)\{0} for any 
given  y>0 . There we have for any given y>0 and all x>0.           

( ) ( ) ( ) ( )
, 2

ln ln
0,y

x y x x y y
f x

x xα
αΓ + − Ψ + − Γ

′ = + < 	 (3.19)

Which implies
( ) ( ) ( )ln ln

.
x y x x y y

x
α

Γ + − Ψ + − Γ
< − 		  (3.20)

By L’Hospital’s rule, we have
( ) ( ) ( )

0

ln ln
lim 0
x

x y x x y y
x→

− Γ + + Ψ + + Γ
= 		  (3.21)

for any given y>0. By virtue of (3.20) and (3.21), we conclude that 
the necessary condition for the reciprocal of the function (1.13) to be 
strictly logarithmically completely monotonic is 0α ≤ .

If the function (1.13) is logarithmically completely monotonic 
(-y,∞)\{0} for any given y>0, then the inequality (3.19) and (3.20) are 
reversed for any given y>0 and all x>0.

By utilizing (2.7) and (2.8), it is easy to see that 
( ) ( ) ( )ln ln

lim 1
x

x y x x y y
x→∞

− Γ + + Ψ + + Γ
= 		  (3.22)

for any given y>0. In fact, it is not difficult to show that 
the necessary condition for the function (1.13) to be strictly 
logarithmically completely monotonic is 1α ≥ .

The proof of theorem 1 is completed.

Proof of Theorem 2
Taking the logarithm of   hy (x) gives

( ) ( )
( )

2

ln ln ln
x

x
y

x y
h x x

x y
+

= − +
Γ +

			   (3.23)22
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µ
+
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( ) 2 21ln
2

xx x xω γ = − + − − 
  				   (3.25)
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2 1 2

n
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x xx x
n n

∞

=

  + + + −     
∑

then

( ) ( ) ( )ln .yh x x xµ ω= + 				    (3.26)

In view of Lemma 4, straightforward calculation gives 
( )( ) ( )ln lnyh x x y′ = + +

				    (3.27)
( ) 2 ln 2x x y t t x

x y
γ+ −Ψ + − + +

+

( ) ( )
1

2 22 .
n

x x x x
n n x

µ ω
∞

=

  ′ ′− − = + + 
∑ 	

By virtue of (1.12), the identity (3.27) is equivalent to 	
( )( ) ( )ln lnyh x x y′ = + + 				    (3.28)

( )x x y
x y

+ −Ψ + −
+

( )( ) ( ) ( )2 ln .x x x x xµ ω′ ′−Ψ = +

By Lemma 5, we know that µ´(x) is strictly increasing on (0,∞) , 
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which and (1.10) imply the limit of µ´(x) equals 1 as x→∞  , therefore

µ´(x) <1				    (3.29)

 holds for all. We know that g (x) is strictly completely monotonic 
on (0,∞), where g (x) is defined by (1.8), hence for given integer  n≥0, 
the inequality     

( ) ( )( )( )11 0
nn xω+ ′− > 			   (3.30)

holds for all x > 0.

And then by using inequality (1.9) and (1.10), we get

( )2 1xω′− < < − 			   (3.31)

For all x > 0. From (3.29) and (3.31), we conclude that

( )( ) ( ) ( )ln 0yh x x xµ ω′ ′ ′= + < 		  (3.32)

for all x > 0 . Utilizing Lemma 5 and (3.30), for given Integer   n≥2, 
it is easy to see that 

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )( )1 ln 1 1 0
n n nn n n

yh x x xµ ω− = − + − > 	 (3.33)

for all x > 0.

Theorem 2 follows from (3.32) and (3.33).

Thus the Proof of Theorem 2 is completed.

Conclusion
In conclusion we establish two new logarithmically completely 

monotonic functions involving the gamma function according to two 
preferred interaction geometries, and a sharp inequality involving 
the gamma function is deduced to solve the problems of genetically 
engineering antibody. It is necessary to address, many other aspects 
(such as thermal condition, alkalinity or acidity, adhesion of 
antibody) are also playing key roles in antibody functioning, which 
could be also understood from bio-mathematical perspective, and 
such knowledge will be in return useful for biomedical application of 
antibodies as well as proteins.
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