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Abstract

Cistanches herba, known as Rou Cong Rong in Chinese, is a pre-
cious nourishing traditional Chinese medicine. Cistanches herba 
contains many bioactive compounds, the most important of which 
are phenylethanoid glycosides and polysaccharides. The rapid de-
velopment of sequencing technology opens a new perspective 
for the research and application of Cistanches herba, and enables 
people to study the synthesis and action mechanism of their ac-
tive components from the genome level. However, the absence of 
genomic and transcriptome analysis of Cistanche herba has hin-
dered its development in planting, pharmacodynamics, and clinical 
studies. In this paper, we summarized the research on the omics of 
Cistanche herba for the first time and update the latest research 
progress on the biological functions and clinical applications of key 
compounds. In conclusion, this review eventually provided a new 
perspective for the further study of the pharmacodynamics and 
industrial development of novel active compounds in Cistanche 
herba.
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Aabbreviations: 4CL: 4-Coumarate-CoA Ligase; 5-HT: Hydroxy-
tryptamine; ACT: Acteoside; AD: Alzheimer’s Disease; AKT: Protein 
Kinase B; ALD: alcoholic liver disease; ARE: antioxidant response 
element; BDNF: brain-derived neurotrophic factor; BM-DCs: Mu-
rine Marrow-Derived Dendritic Cells; C. deserticola: Cistanches 
deserticola; C. salsa: Cistanches salsa; C. sinensis: Cistanches si-
nensis; C. tubulosa: Cistanches tubulosa; CASP-1: Cysteinyl Aspar-
tate Specific Proteinase 1; CCR: Cinnamoyl-CoA Reductase; CDAE: 
Alditol Extract from C. deserticola; CDHE, Ethanol Extract of C. de-
serticola; CDPs: C. deserticola Polysaccharides; Cp: Chloroplasts; 
CRJG: Congrongjing Granules; CTE: C. tubulosa Aqueous Extract; 
CTPG: PhGs of C.tubulosa; CYP73A: Cytochrome P450 Family 73; 
CYP8B1: Cytochrome P450 Family 8 Subfamily B Member 1; ECH, 
Echinacoside; ERK: Extracellular Regulated protein Kinases; F5H: 
Ferulate-5-Hydroxylase; FASN, recombinant Fatty Acid Synthase; 
FGF15: Fibroblast Growth Factor 15; FXR: Farnesoid X Receptor; 
GO: Gene Ontology; HCC: Hepatocellular Carcinoma; HCT: shiki-
mate o-Hydroxycinnamoyl Transferase; HMGB1: High Mobility 
Group box-1 Protein; HO-1: Heme Oxygenase-1; IL-1β: Interleukin-
1β; IL-6: Interleukin-1β; JAK2: Janus Tyrosine Kinase 2; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; MAPK: Mitogen-Activated 
Protein Kinases; MCAO: Middle Cerebral Artery Occlusion; MEK: 
Mitogen-activated Extracellular signal-regulated Kinase; Mit: Mi-
tochondria; mTOR: Mammalian Target of Rapamycin; NF-κB: Nu-
clear Factor Kappa-B; NLRP3: Nucleotide-Binding Oligomerization 
domain 3; Nrf2: Erythroid 2-Related Factor 2; PAL: Phenylalanine 
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Ammonialyas; PD: Parkinson’s Disease; PhGs: Phenylethanoid Gly-
cosides; PI3K: Phosphoinositide 3-Kinase; PMOP: Postmenopausal 
Osteoporosis; ROS: Reactive Oxygen Species; rRNA: Ribosomal 
RNA; SCF: Stem Cell Factor; SREBP-1c: sterol Regulatory Element 
Binding Protein-1c; STAT3: Signal Transducer and Activator of Tran-
scription 3; TGR5: Takeda G Protein-Coupled Receptor 5; Th17: T 
Helper Cell 17; TLR4: Toll-Like Receptor 4; TNF-α: Tumor Necrosis 
Factor-α; TrkB: Tyrosine Kinase B; tRNA: Transfer RNA; VD: Vascular 
Dementia; WPCD: Polysaccharides of C. deserticolaIntroduction

Cistanches herba is a kind of traditional Chinese medicine 
with high medicinal value in history, known as “desert ginseng”. 
There are four species of Cistanches herba in China, which are 
Cistanche deserticola, Cistanche salsa, Cistanche tubulosa, and 
Cistanche sinensis. C. deserticola and C. tubulosa [1]. C. deser-
ticola and C. tubulosa are the most commonly used and are re-
corded in the Chinese Pharmacopoeia. C. deserticola has been 
recognized as "Homologous medicine and Food" in China since 
2018. More than 200 compounds have been identified from Cis-
tanche herba, including phenylethanoid glycosides (PhGs), poly-
saccharides, essential oils, iridoid and lignans [2]. Among them, 
PhGs and polysaccharides have been proven to have a series of 
biological activities, including anti-oxidative, anti-inflammatory, 
anti-tumor, and neuroprotective properties [3]. To put it briefly, 
Cistanche herba has a high value of further development, and 
its biological activities in clinical are increasingly studied.

In recent years, scientists have made in-depth studies on 
the morphological recognition, composition analysis, structure 
identification. However, few studies have been conducted on 
the genome structure, functional genomics, and proteomics of 
Cistanche herba. Therefore, this article reviews the omics stud-
ies of Cistanche herba, biological functions and clinical applica-
tions of important compounds in Cistanche herba, in order to 
discover new potential research directions and industrial devel-
opment opportunities for Cistanche herba.

Genome Structure of Important Organelles

The structure of the nuclear genome in Cistanche herba has 
not been reported, but many scientists have studied organelle 
genomes [4]. Plastids are unique organelles of green plants, 
which develop into chloroplasts, chromoplasts, and leucoplasts 
after maturity [5]. The Cistanche herba plastid genomes all 
showed the conserved quadripartite structure (Table 1). With 
a total length of 102,657 bp, C. deserticola possesses the larg-
est plastome among the three Cistanche herba. The plastid ge-
nomes of C. tubulosa, C. salsa and C. sinensis are 94,123 bp, 
101,776 bp and 87,707 bp, respectively [6]. It is worth noting 
that the LSC region of C. deserticola is the longest (48,350 bp) 
and the SSC region of C. sinensis is the longest (11,865 bp) [6].

Chloroplasts (Cp) are the places where plants perform 
photosynthesis and have attracted more attention than other 
plastids because of their important role in plant physiological 
development [7]. The chloroplasts genome of C. deserticola is 
109,495 bp in length, consisting of one LSC (48,352 bp), one SSC 
(398 bp), and two IRs (30,352 bp) [8]. It contained 27 protein-
coding genes, four rRNA genes, and 29 tRNA genes. Addition-
ally, genes required for photosynthesis suffer from gene loss 
and pseudogenization, except for psbM [8]. As for the other Cis-
tanche herba, the chloroplasts genome size was 111,710 bp in 
C. salsa, 111,500 bp in C. sinensis, and 75,375 bp in C. tubulosa 
[9]. Almost all genes related to photosynthesis were pseudoge-
nized or lost, with the most severe loss occurring in C. tubulosa 
[9]. This suggests that Cistanche herba cannot photosynthesize 

independently, and its photosynthesis-related genes or protein 
products may come from the host Haloxylon ammodendron. 
Mitochondria (Mit) are essential for various metabolic process-
es, such as cellular respiration and ATP synthesis [10]. The mi-
tochondria genome of C. tubulosa was significantly larger than 
other species (3,978,341 bp). The mitogenomic lengths of the 
C. deserticola and C. salsa were 1,860,774 bp and 1,708,661 bp, 
respectively [11]. It is worth mentioning that C. tubulosa has a 
higher number of genes than C. deserticola and C. salsa [11].

Gene Expression Profiles

For non-model organisms without reference gene sequenc-
es, transcriptome data can be used to discover gene expression 
profiles and biological characteristics of species on a larger scale 
[12]. At present, the nuclear genome data of Cistanche herba 
have not been published, but their gene expression profiles are 
crucial to elucidate its parasitic mechanism, compound synthe-
sis pathway, and environmental adaptation.

Li Y et al. performed deep transcriptome sequencing in 
fleshy stem of C. deserticola using Illumina HiSeq2000 platform 
[13]. Using trinity assembler, they obtained 95,787 transcript 
sequences ranging from 200 bp to 15,698 bp, having an average 
length of 950 bases and the N50 length of 1,519 bases. 30098 
identified actively expressed transcripts were annotated to a 
wide range of GO categories and KEGG pathways, such as ter-
penoid backbone biosynthesis, phenylpropanoid biosynthesis, 
and carotenoid biosynthesis, indicating that active metabolic 
processes were underway in the C. deserticola stem tissue [13]. 
A recent study by Hou et al. performed the full-length transcrip-
tome sequencing and gene expression profiling of C. tubulosa 
using PacBio combined with BGISEQ-500 RNA-seq technology 
[14]. A total of 237,772 unique transcripts were obtained, rang-
ing from 199 bp to 31,857 bp. Among the unique transcripts, 
188,135 (79.12%) transcripts were annotated [14]. It is worth 
mentioning that 1080 transcripts were annotated for 22 en-
zymes related to PhGs biosynthesis [14].

Synthesis of Important Compounds

Traditional natural extraction or artificial chemical synthesis 
methods are difficult to meet the needs of scientific research 
and new drug development. Genomic and transcriptomic stud-
ies could be used to identify key enzyme coding genes of specific 
metabolic pathways and optimize these pathways by improving 
the expression of key enzymes encoding genes to obtain the re-
quired components [15]. Based on de novo transcriptome of C. 
deserticola, PhGs has two different biosynthesis pathways and 
17 enzyme genes [13,14]. The possible post-caffeic acid/ferulic 
acid reaction process was published for the first time, in which 
the caffeic/ferulic acid would be first oxidized into phenylpyru-
vate derivate, then the carboxyl group was removed by decar-
boxylases, and finally, aldehyde group was converted back into 
alcohol group by dehydrogenase [13,14]. Another is based on 
phenylalanine metabolism pathway, in which the phenylalanine 
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to phenylethanol was achieved by a known ‘Enrlich pathway’, 
then phenylethanol is converted to phenylethanol aglycone by 
monooxygenase or methyltransferase, and further phenylethyl 
alcohol glycoside is synthesized [13]. The complete picture of 
lignin biosynthesis pathways in C. deserticola was also present-
ed by Li YL et al. [13], in which the lignin monomers are bio-
synthesized from phenylalanine through a series of enzymatic 
reactions, including hydroxylation, methylation, reduction, and 
oxidative polymerization process [16,17]. Phenylalanine Ammo-
nialyas (PAL) is the first key enzyme in this pathway to convert 
phenylalanine to cinnamic acid by non-oxidative deamination 
[18,19]. 4-Coumarate-CoA Ligase (4CL) and trans-Cinnamate 
4-Monooxygenase (CYP73A) subsequently convert cinnamic 
acid to coumaroyl-CoA. Finally, key enzymes Cinnamoyl-CoA 
Reductase (CCR), shikimate o-Hydroxycinnamoyl Transferase 
(HCT), and Ferulate-5-Hydroxylase (F5H) regulate the synthesis 
of different types of lignin by coumaroyl-CoA [20,21].

Biological Activities

Neuroprotection effects: AD is an irreversible and pro-
gressive neurodegenerative disorder whose pathogenesis is 
complex and not completely clear, including oxidative stress, 
mitochondrial abnormalities and neuroinflammation [22]. In 
vitro experiments, PhGs of Cistanche herba could reduce oxi-
dative stress, scour free radicals, inhibit neural cell apoptosis, 
and promote neural cell growth and repair [23-25]. C. Tubu-
losa aqueous Extract (CTE) could improve memory loss in AD-
like rats [24]. Specifically, Echinacoside (ECH), and Acteoside 
(ACT), the major components of CTE [26], could significantly 
improve the learning and memory ability of AD animal models, 
and the mechanism is related to inhibiting neural cell apopto-
sis and reducing oxidative stress [23,27-30]. Additionally, PhGs 
of Cistanche herba could regulate brain energy metabolism by 
regulating insulin signaling [31], and ACT is preferable to total 
phenylethanoid glycosides in anti-AD [32].

The typical neuropathological features of PD are degenera-
tion of dopaminergic neurons in the substantia nigra [33], ac-
companied by chronic neuroinflammation [34]. Neurotoxic sub-
stances produced by activated microglia are key molecules that 
mediate the occurrence. ECH of Cistanche herba could signifi-
cantly inhibit the activation of microglia cells induced by inhib-
iting the inflammatory signaling pathway NLRP3/CASP-1/IL-1β 
[35]. Additionally, ECH showed neuroprotective effects on PD 
pathological mice via regulating the IL-6/JAK2/STAT3 pathway 
to inhibit the activation of microglia [36]. ACT effectively allevi-
ated rotational behavior in PD rats, and its anti-PD mechanism 
is related to the regeneration of tyrosine hydroxylase-immuno-
reactive neurons in the substantia nigra and the activation of 
the Nrf2/ARE signaling pathway [37-39].

PhGs from C. tubulosa could regulate neuroinflammation 
via microglial M1-M2 polarization and alleviate ischemic stroke 
caused by Middle Cerebral Artery Occlusion (MCAO) [40]. PhGs 
from C. deserticola could improve the stroke through enhancing 
endogenous neural stem cells proliferation via activating Wnt/
β-catenin signaling pathway [41]. Therefore, Cistanche tubulosa 
and C. deserticola could be a candidate therapeutic agent or 
supplements for treating neuroinflammation related to isch-
emic stroke. Specifically, ACT could alleviate ischemic stroke by 
inhibiting microglial HMGB1/TLR4/NLRP3 signaling pathway in 
vivo [42]. Vascular Dementia (VD) is a severe cognitive disorder 
mainly caused by ischemic stroke. PhGs of Cistanche herba ex-
erts its learning and memory-promoting effects in rat models 
of VD by weakening the accumulation of toxic proteins (Aβ and 

p-tau) and promoting neuronal cytoskeleton regeneration [43]. 
ECH could exert anti-VD activity by upregulating the expression 
of brain-derived neurotrophic factor (BDNF) and tyrosine kinase 
B (TrkB) in the hippocampus of VD rats and alleviating the isch-
emic injury of neurons [44].

Gastrointestinal Tract Protection Effects

Cistanche herba extract could significantly improve the con-
stipation of yang deficiency constipation rats and its mecha-
nism may be related to the regulation of gastrointestinal hor-
mone levels [45]. It could effectively improve the water holding 
capacity of feces, which is conducive to increasing the excretion 
of mice [46]. Furthermore, C. deserticola extract could improve 
defecation via SCF/C-kit signaling pathway [47]. In addition, CTE 
could regulate the composition of intestinal microbiota in rats 
[48] and restore their disordered intestinal microbiota [49]. 
Moreover, CTE could restore the growth of lactic acid bacteria 
and then regulate the structure of intestinal microbiota in mice 
with intestinal diseases [50]. Polysaccharide, as the main active 
ingredient of CTE [51], also played intestinal regulatory func-
tion mainly by maintaining the balance of intestinal microbiota 
composition, improving its metabolic function, or synergistic 
interaction with intestinal microbiota mediated drugs [52]. 
Additionally, alditol extract from C. Aeserticola (CDAE) attenu-
ate functional constipation by regulating bile acid metabolism. 
It could increase the expression of CYP8B1, FGF15, TGR5, and 
FXR, thereby modulating bile acid synthesis and enterohepatic 
circulation [53].

Anti-Osteoporosis Effects

Osteoporosis is a chronic disease characterized by dete-
rioration of the bone structure and low bone mineral density 
[54]. Many studies have demonstrated that C. deserticola ex-
tract have significant anti-osteoporosis activity [55-57]. Ethanol 
extract of C. Deserticola (CDHE) improves bone loss in Post-
menopausal Osteoporosis (PMOP) mainly through regulating 
lipid metabolism pathways in vivo [58]. ECH and ACT from C. 
tubulosa have shown significant anti-osteoporosis activities in 
the rat model of osteoporosis combined with AD [59]. ECH and 
ACT could significantly improve the bone quality and total bone 
mineral density of the femur in rats and promote bone forma-
tion and inhibit bone resorption [60]. ACT from Cistanche may 
exert osteoprotective effects by activating the PI3K/AKT/mTOR 
signaling pathway to alleviate Dex-induced osteoporosis [61]. In 
addition, Cistanoside A is able to promote bone formation and 
prevent bone resorption by interfering with NF-κB and PI3K/Akt 
pathways [62]. Moreover, total glycosides and polysaccharides 
from C. deserticola could promote osteogenesis formation and 
improve bone microstructure damage in mice by activating the 
Wnt/β-catenin signaling pathway [63].

Anti-Depressant Effects

The decoction of C. deserticola and C. tubulosa could improve 
spatial learning and memory in mice models of depression, and 
the mechanism may be related to the ‘gut-brain’ axis [64]. C. 
Deserticola Polysaccharides (CDPs) showed significant effects 
on improving abnormal behaviors of depressed rats by main-
taining Th17/Treg balance and modulating gut immunity [65]. 
CTE could significantly improve depression-like behaviors in rats 
by regulating the structure of intestinal microbiota and restor-
ing the levels of Hydroxytryptamine (5-HT) and BDNF through 
the ‘gut-brain’ axis [48]. Caffeic acid is the main degradation 
product of CTE in depression model rats [66], which could pro-
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duce antidepressant effects [67]. These metabolites have good 
intestinal absorption and bioavailability and are more likely to 
be absorbed into the blood [68,69]. In addition, ECH could exert 
antidepressant effects by activating the AMPAR-Akt/ERK-mTOR 
signaling pathway, in which mTOR is a key signaling target for 
rapid antidepressant effects [70].

Anti-Tumor Effects

Previous studies have demonstrated that PhGs of Cis-
tanche herba exhibit antitumor effects on a variety of tumor 
cells through different signaling pathways. PhGs of C. tubulo-
sa induced apoptosis in Hepatocellular Carcinoma (HCC) cells 
through both the mitochondria-dependent and MAPK signaling 
pathways in vitro [71]. In addition, PhGs of C. tubulosa could 
inhibit the growth of B16-F10 cells and esophageal cancer ECA-
109 cells both in vitro and in vivo via mitochondria-dependent 
pathway [72,73]. PhGs of C. deserticola could significantly in-
hibit the mitochondrial respiration and glycolysis functions of 
HepG2 cells, increase the level of ROS, and inhibit cell prolifera-
tion [74]. ECH exerted antiproliferative and proapoptotic func-
tions on HepG2 cells via decreasing TREM2 expression and inac-
tivating the AKT pathway as well as miR-503-3p/TGF-β1/Smad 
axis [75,76]. Moreover, ECH could not only inhibit the growth of 
pancreatic cancer SW1990 cells by promoting ROS generation 
and MAPK signaling pathway [77], but also promote pyroptosis 
of non-small cell lung cancer cells through Raf/MEK/ERK signal-
ing pathway [78].

Anti-Oxidant Effects

ECH could significantly attenuate ethanol-induced oxidative 
stress by enhancing the levels of antioxidants and reducing the 
level of ROS via SREBP-1c/FASN pathway [79]. ECH could also 
ameliorate oxidative stress and alcohol-induced liver injury by 
increasing the activity of erythroid 2-related factor 2 (Nrf2), 
which is promising for the treatment of Alcoholic Liver Disease 
(ALD) [80]. Additionally, Cistanoside could markedly attenuate 
the harmful effects of hypoxia-induced oxidative stress by af-
fecting antioxidant enzyme activities in testes and GC-1 cells 
[81]. Moreover, Cistanche polysaccharide is also an effective an-
tioxidant, and its phenolic hydroxyl structure could directly bind 
to free radicals and the activate antioxidant defense system 
[82]. The polysaccharide of C. deserticola could induce melano-
genesis in melanocytes and reduce oxidative stress via activat-
ing NRF2/HO-1 pathway, which could be used as a new drug for 
the treatment of decolorization disease [83].

Immune Regulation Effects

PhGs of C. Tubulosa (CTPG) had an immune enhancement 
function, which could not only significantly increase the num-
bers of CD4+ and CD8+ T cells but also enhance the activation 
state of CD4+ T cells [71]. Moreover, CTPG could inhibit the 
apoptosis of splenocytes induced by cisplatin, which is charac-
terized by the increased numbers of T cells and the decreased 
numbers of MDSCs and Tregs [71]. Polysaccharides of C. de-
serticola (WPCD) could modulate immune responses in vitro 
and in vivo. WPCD significantly promoted the maturation and 
function of murine Marrow-Derived Cendritic Cells (BM-DCs) 
through up-regulating the expression levels of MHC-II and al-
logenic T cell proliferation, as indicated by in vitro experiments 
[84]. Moreover, WPCD could enhance immunogenicity through 
a balanced Th1-/Th2-type response and an effective T-cell re-
sponse, which could be used as a polysaccharide adjuvant on 
seasonal influenza vaccines [85].

Clinical Application

Digestive System

The clinical treatment of Cistanche herba on the digestive 
system is limited to constipation. Congrong tongbian decoction 
(Chinese herba preparation in hospital) has good therapeutic 
effects on yang-deficiency constipation, which refers to the pa-
tients with dry stool but difficult defecation, accompanied by 
cold and waist and knee soreness. After seven days of treat-
ment, the defecation time of patients with constipation signifi-
cantly shortened, and the defecation effect was strengthened 
with the increase in dose [86]. Cistanche herba decoction (Chi-
nese native medicine preparation made by the hospital) could 
not only improve constipation caused by hemodialysis but also 
have long-lasting effects and no adverse reactions [87]. More-
over, Cistanche decoction (Chinese native medicine preparation 
made by the hospital) could effectively improve the constipa-
tion symptoms of Parkinson's patients, and the efficacy is better 
than that of the western medicine group [88].

Nervous System

Cistanche herba is clinically used for the treatment of mild 
AD. After agents treatment of C. deserticola (3222002216000), 
the cognitive status of mild AD patients has been significantly 
improved, and the mechanism is mainly related to the reduc-
tion of t-tau, TNF-α, and IL-1β in cerebrospinal fluid and delayed 
hippocampal atrophy [89]. Cistanche total glycoside capsules 
(Z20080047) also had good therapeutic effects on AD. After 12 
weeks of treatment, the cognitive function of AD patients was 
significantly improved and the adverse reactions were less than 
those of the western medicine group [90]. Cistanche herba is 
usually combined with western medicine in the treatment of 
PD. Congrongjing Granules (CRJG) (Chinese native medicine 
preparation made by the hospital) could reduce the side effects 
of western medicine and improve the quality of life in patients 
with PD, and its efficacy and safety are better [91]. Moreover, 
Cistanche herba (Chinese native medicine preparation made 
by the hospital) combined with acupuncture and moxibustion 
could not only improve the motor ability of early PD patients 
[92], but also improve the non-motor symptoms of PD patients 
[93]. Additionally, the other two medicines of Cistanche could 
effectively improve life quality of PD patients, Cistanche Shu-
jing granule (Chinese native medicine preparation made by the 
hospital) and Cistanche Yizhi (Z20194044) capsule could signifi-
cantly relieve the depressive symptoms of PD patients [94,95].

Other Diseases

C. deserticola has two-way regulation of bone formation and 
bone resorption, and could effectively resist osteoporosis. After 
six months of C. deserticola treatment (Chinese native medi-
cine preparation made by the hospital) in patients with primary 
osteoporosis, the achieved effects are significant, such as im-
proved serum alkaline phosphatase, calcium, and phosphorus 
metabolism, increased bone density [96]. Additionally, CTE 
(Chinese native medicine preparation made by the hospital) is 
helpful to prevent motor organ dysfunction. After 12 weeks of 
CTE treatment, the stride length and gait speed of patients with 
locomotive syndrome increased, and no obvious adverse reac-
tions were observed [97]. Moreover, CTE could effectively re-
lieve tinnitus symptoms caused by chronic nephritis. After three 
months of treatment, the tinnitus symptoms of adult patients 
with chronic glomerulonephritis were significantly relieved [97].
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Conclusions

This article summarized the progress in omics research in-
cluding the organelle genome and transcriptome of Cistanche 
herba for the first time. We found significant differences in the 
genomic structure of important organelles of different Cistanche 
herba (Table 1), suggesting that genomic data could solve the 
long-controversial problem of Cistanche herba identification in 
the future. In addition, the synthesis pathway, biological func-
tion and clinical application of PhGs, an important compound 
of Cistanche herba, were reviewed. Future studies should focus 
on overcoming the technical problems of assembling genome 
with high heterozygosity, high repeat sequences and high GC 
content to construct high-quality nuclear genome profiles of 
Cistanche herba, so as to solve the difficult situation of qualita-
tive characterization of transcriptome. Moreover, researchers 
should integrate the multi-omics data of Cistanche herba to elu-
cidate the total synthesis pathways of its important compounds 
(taking PhGs as an example) and further explore new active 
compounds. In conclusion, this article provides a new insight 
for further pharmacological research and clinical application of 
Cistanche herba, and provides a high-level theoretical basis for 
its industrial transformation.
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