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products carrying Leucine-Rich Repeats (LRRs), and is typically 
distinguished from PTI by elicitation of Hypersensitive Response 
(HR)-associated localized program cell death. 

Majority of R genes cloned so far belong to the Nucleotide-Binding 
Site Leucine-Rich Repeat (NBS-LRR) or LRR Kinase super-families 
[7]. NBS-LRR gene family organized in large clusters of orthologous 
genes and comprised about 1500 genes in rice [11]. Examples of 
known NBS-LRR R genes include the Xanthomonas resistance gene 
Xa1 in rice [12]. For example, most (22 out of 23) cloned functional 
blast resistant R genes and one cloned gene (Xa1) against bacterial 
blight in rice represents NBS-LRR domains [12-14]. The Bph14 gene 
against brown-plant hopper also encodes CC–NB–LRRprotein of 
the NB–LRR family [2]. Most of the R genes mapped against gall 
midge resistance in rice are also from NBS-LRR gene family [15-17]. 
Even though the recognition mechanisms and outcomes of PTI and 
ETI are different, the intermediate signaling pathways overlap [10]. 
After recognition, plant’s constitutive basal defense mechanisms [12] 
initiates a diverse set of downstream signaling events, leading to an 
activation of complex signaling cascades such as rapid microbursts 
of Reactive Oxygen Species (ROS), callose deposition to strengthen 
the cell wall, ion channels and MAP kinase cascades, phytohormones 
like Salicylic Acid (SA), Jasmonic Acid (JA), Ethylene (ET) and 
transcriptional induction of defense related genes [18,19]. 

ROS
A virulent pathogen, successfully recognized by the action of 

disease resistance (R) gene products in plant, elicit a biphasic ROS 
accumulation that act as direct reactive substrates to kill pathogens, 
and to strengthen plant cell walls by via cross-linking of glycoproteins 
to obstruct further extension of the pathogen [20]. ROS commonly 
triggers and precedes programmed cell death and also functions 
as signal molecules for production of Pathogenesis-Related (PR) 
protein. In rice, OsRac1 GTPase complex, which is essential for PTI, 
participate in direct regulation of NADPH oxidase which in turn 
controls ROS production [21]. Enzymes generating ROS during 
the defense response include NADPH oxidase, peroxidase, oxalate 
oxidase and amine oxidase. The increase of Ca2+ concentration is an 
important factor in the development of Reactive Oxygen Intermediate 
(ROI) mediated cell death [22]. Ca2+ is a well-known secondary signal 
in numerous signaling pathways among eukaryotes. ROS induction 
has been implicated in rice against bacterial blight [23], blast [24] 
and gall midge resistance [25]. In rice-BHP interaction, Ca2+influx 
is triggered by insect feeding as one of the earliest cellular event [26].

Mitogen-Activated Protein Kinase (MAPK) 
Cascades

MAP kinase signaling has been reported to be involved in both PTI 
and ETI plant defense pathways [27]. MAPK pathways are activated 
by pathogen attack and mediated by SA which subsequently result in 
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Rice is one of the major food crop for half of the world’s 

population. The production of rice is influenced by various biotic 
and abiotic factors. Although over 100 species of insects have been 
reported as pests of rice, major pests that are of economic importance 
are the stem borers (Chilosuppressalis), the Brown Plant Hopper, 
(BPH) (NilaparvatalugensStal), Asian rice gall midge (Orseoliaoryzae) 
and rice bugs [1-3]. Rice blast (Magnaportheoryzae), bacterial blight 
(Xanthomonasoryzaepv oryzae), are the most destructive fungal 
and bacterial diseases of rice [4,5]. A crucial step in plant defense 
is the timely perception of the stress in order to respond in a rapid 
and efficient manner. Present study reviews rice defense signaling 
pathway in disease resistance against blast, bacterial blight, BPH and 
Asian rice gall midge. 

Molecular responses of plants are associated with the feeding 
way and tissue damage amount caused by different plant-pathogens/
herbivore interaction [2]. Plants induce a multilayered immune 
system after recognition of non-self-molecules such as microbial-
associated molecular patterns (PAMPs) from pathogenic organism 
and cease the growing pathogen by two effective ways of plant innate 
immunity which is called PAMP-Triggered Immunity (PTI) and 
Effector-Triggered Immunity (ETI).These PAMPs which include 
bacterial flagellin, Lipopolysaccharides (LPSs), Elongation Factor 
Tu (EF-Tu) and fungal chitin are perceived in plants via membrane-
bound receptor known as Pattern Recognition Receptors (PRRs), 
which eventually results in activation of PTI [6-7]. PRRs typically 
consist of an extracellular Leucine-Rich Repeat (LRR) domain and 
an intracellular Receptor Like Kinases (RLKs) domain [8]. Xa21, a 
rice resistance (R) gene that confers resistance to diverse X. oryzae 
pv. Oryzae strains was considered a pattern recognition receptor [9]. 
In most cases, PTI is adequate to suppress disease development via 
hindering pathogen establishment. However virulent pathogens, 
escape PTI-based surveillance by transporting small effector proteins 
in the plant cells, which in turn cause effector triggered plant 
susceptibility. Second level of innate immunity which is known as 
Effector-Triggered Immunity (ETI) has been observed in plants. ETI, 
also known as R-gene-mediated resistance, or specific resistance, 
represents a more amplified form of resistance [10]. ETI is initiated 
through plant cultivar-specific recognition of microbial effectors. 
Specific recognition is generally mediated via resistance (R) gene 
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pathogenies-related protein expression. Seventeen MAPK genes have 
been identified in the rice genome, however the role of these OsMPKs 
in rice defense responses yet to be deciphered [28]. The OsMAPKs 
negatively regulates rice resistance to both the pathogens (blast and 
bacterial blight) [29]. BWMK1, the first cloned MAPK gene in rice 
interacts with AP2/EREBP family of Transcription Factor (TF) and 
phosphorylates ERFs Pti4 and OsEREBP, pivotal step in regulating 
resistance to blast and bacterial blight disease [30]. Expression levels 
of four MAPK genes (OsMPK5/12/13/17) were found to be induced 
by Blast and BPH [31].

Hormone signaling
Plant hormones are typically divided in two groups; one groups 

is for growth hormones such as auxin, Gibberellic Acids (GAs), 
Brassinosteroids (BRs) and Abscisic Acid (ABA) and, the other 
group is for defense related hormones such as SA, JA and ET those 
are associated with the regulation of diverse array of biotic stress 
responses [32]. However in past few decades, the role of growth 
hormones in plant defense have been widely studied which regulate 
plant defense, either by themselves or in combination with the 
defense hormones [33]. Biotic stress responses are preferentially 
mediated by antagonism of SA and JA/ET pathways. SA pathway 
is mostly connected with responses to biotrophic pathogens, while 
JA and ET pathways generally act synergistically and are linked to 
defenses against necrotrophic pathogens and herbivorous insects. 

Downstream of SA biosynthesis, the SA pathway in rice shares 
a typical redox protein, NPR1 (NON-EXPRESSOR OF PR1) [34]. 
NPR1 exists as dimeric inactive protein which gets activated by SA-
pathway. Salicylic acid reduces the intermolecular disulphide bonds 
and releases monomeric NPR1, which is translocated to the nucleus 
from cytosol where it interacts with TGA TF to activate defense-related 
gene expression [34,35]. Jasmonic Acid (JA) and its derivatives such 
as Methyl Jasmonate (MeJA) are known as lipid-derived hormones 
that play multiple and important regulatory role which comprise the 
regulation of developmental and defense processes in plants [36]. The 
only jasmonate receptor identified to date is COI1 protein, an F-box 
protein, which binds to JAZ proteins, a negative regulator of JA-
responsive genes, finally leading to ubiquitin-dependent degradation 
[37]. Other JA responsive genes include leucine aminopeptidase and 
Allene Oxidecyclase (AOC) those are crucial in the proper functioning 
of JA signaling. It has been reported that the JA signaling pathway 
negatively regulates rice resistance to BPH, while the transcription 
levels of genes that are known to function in the SA pathway are 
activated in the Bph14-mediated insect resistance following BPH 
feeding [38]. Rice-gall midge interaction showed up-regulation of SA 
pathway in HR+ and not in HR- mediated defense [39-41]. 

Transcription Factors (TFs)
Changes in gene expression and the reprogramming of the 

molecular defense machinery is regulated by the action of TFs. Among 
many different type of TFs available in plants, the most common TFs 
involved in plant defense mainly belong to six groups; WRKY,AP2/
ERF, MYB, BZIP, MYC and NAC [42]. Among the WRKY TFs, 
OsWRKY45 is known as second master regulator of SA pathway which 
functions parallel to NPR1 to mediate resistance to blast and bacterial 
blight diseases of rice [43]. OsWRKY45 seems to be activated at least 
in part by an SA-dependent phosphorylation cascade controlled by 

the OsMPK4 and OsMPK6. OsWRKY70 induction increases plant 
susceptibility in rice against BPH feeding [44]. OsWRKY62 is a 
negative regulator of both types of plant immunity (PTI and ETI). 
AP2/ERF TFs constitutes ~163 members in rice and ~ 140 members 
in Arabidopsis [45]. OsEREBP1 was reported to be induced in rice and 
bacterial pathogen, Xanthomonas, oryzaepv, oryzae (Xoo) interaction 
[29]. MYB15 and WRKY40 TFs may play important roles in the 
transcriptional regulation of carbohydrate metabolism in citrus–HLB 
interactions [46,47]. A number of NAC proteins such as OsNAC4 
have been reported inducing HR and cell death by activating PR genes. 
NAC TFs (ONAC122 and ONAC131) in rice increased susceptibility 
to blast disease [48]. BZIP transcription factors are characterized by 
their basic leucine Zipper (bZIP) domain which is involved in DNA 
binding. Rice rTGA2.1 interacts with OsNPR1 which has a negative 
impact on SAR by altering accumulation of PR genes in response to 
bacterial blight disease [49]. In contrast, OsbZIP1 may play a positive 
role in the SA-dependent signal transduction after Blast infection 
[50]. BPH feeding could suppress OsbZIP60 expression levels by 
introducing effector proteins which suggest that the BPH may protect 
itself that suppress stress responses and enhance susceptibility [31]. 

The present study summaries and presents an informal 
description of complex and comprehensive molecular mechanism 
of rice defense against several pests and pathogens. Plant defense 
and pathogen counter defense mechanisms evolved as a part of co-
evolutionary race between plants and their natural enemies. In the past 
decades significant progress was made in elucidating the molecular 
mechanism and cross talk has been recognized between hormone-
regulated and defense-signaling pathways. Future studies will be 
focusing more to understand the specific responses against different 
combinations of stress that could be controlled by different signaling 
pathways and may elucidate additional candidate disease resistance 
genes/pathways for crop protection and breeding programs.
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