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Abstract

Numerous studies have indicated that investing in defense usually comes 
at the expense of plant growth. A phenomenon known as the “growth-defense 
tradeoff”. Nevertheless, recent research puts emphasize on the fact that 
the degree of cooperation and crosstalk between phytohormones is of key 
importance in driving plant responses to their ever-changing environment. In 
this context, the growth hormone indole-3-acetic acid, the most common auxin 
in the plant kingdom, makes no exception. Several lines of evidence indicate 
that the relationship between auxin and jasmonates is of particular relevance for 
the control of plant defenses responses. In this review we discuss multiple levels 
at which auxin homeostasis can intimately regulate plant defense against biotic 
foes, paying special attention to responses towards phytophagous predators.
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most important plant growth hormone [15-18]. In agreement with 
the antagonistic relationship between growth and defense, Mutka 
and co-workers [19] demonstrated that elevation of the endogenous 
content of IAA, driven by the constitutive overproduction of the 
Auxin biosynthetic gene YUC1, increased the susceptibility of 
the Arabidopsis mutant against the plant pathogen Pseudomonas 
syringae. Moreover, it has been observed that inactivation of IAA-
mediated processes, i.e. cell expansion and plant cell wall relaxation, 
activates Nicotiana attenuata defense in response to the herbivore 
Manduca sexta oral secretion elicitation [10]. Nonetheless, despite all 
this insight suggesting a negative impact of auxin in plant defense, a 
number of recent studies have called this assumption into question. 
For example, it has been observed that several herbivory insects 
are capable of manipulating IAA biosynthesis to induce abnormal 
tissue formation, such as galls [20]. In view of these evidences, we 
specifically try to summarize and discuss recent findings concerning 
the contribution of auxin in the regulation of plant defense against 
phytophagous predators in this mini-review. Furthermore, we try 
to highlight new molecular targets for plant bioengineering that 
may facilitate increased crop resistance against herbivore foes. The 
intricacies of IAA biosynthesis and signaling will not be considered 
here, and readers interested in this aspect should consult the recent 
reviews on this topic [15,16,21,22].

Direct Plant Defense Activates Auxin 
Biosynthesis and Signalling

To understand plant defense responses against phytophagous 
pathogens we should establish two different levels of action, known as 
direct and indirect defense. Direct defenses involve all the appliances 
used by the host plant to counteract a specific attack from predators 
[23-27]. A good example of this is the mechanical protection of the 
plant surface by the development of spines, thorns and trichomes 
[28,29]. Focusing on leaf trichomes, studies performed in several 
plant species have consistently demonstrated that the formation of 
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Auxin: An Overview of the Growth-Defense 
Dilemma 

Excluding seed dispersion, the entire life cycle of higher plants 
proceeds anchored to a fixed place. Due to this fact, the rapid 
integration of environmental signals is of key importance to 
develop effective mechanisms to cope with changes including the 
defense against abiotic and biotic stresses [1,2]. Plant hormones 
or phytohormones, are small chemical messengers derived from 
secondary metabolism that take center stage in the integration and 
translation of environmental demands into physical plant responses 
[3,4]. The major hormones produced by plants include the “classical” 
five, i.e. auxins, gibberellins (GA), cytokinins (CK), abscisic acid 
(ABA), ethylene (ET), and the relatively new compounds salicylic 
acid (SA), jasmonates, brassinosteroids (BR) and strigolactones [5-
7]. Regarding their function, auxins, BR, CK, GA and strigolactones 
are known to play decisive roles in the orchestration of growth and 
development [8]. In contrast, ABA, SA, jasmonates and ET are 
considered to play crucial roles in mediating plant defense responses 
against pathogens and abiotic stresses, such as drought, light, salinity, 
or high temperatures [6,9]. Historically, it has been assumed that these 
two functional blocks act antagonistically and, therefore, growth and 
defense-related hormones work in separate modules. Supporting this 
hypothesis, jasmonic acid (JA) and its metabolites, collectively known 
as jasmonates (JAs), are plant growth inhibitors, mainly involved in 
counteracting stress against herbivore and pathogen attack [10-12]. 
In vivo-analyses demonstrated that induction of endogenous JAs 
in Arabidopsis is sufficient to impair primary root growth and leaf 
expansion [13]. In leaves, JAs exert their growth inhibitory effect 
through the suppression of mitosis, by arresting the cell cycle in G1 
prior to the S transition [14]. In contrast to the growth inhibitory 
effect triggered by JAs, indole-3-acetic acid (IAA) constitutes the 
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these structural barriers is controlled by the combined action of JA, 
GA, and CK [30-33]. Interestingly, Auxin Response Factors (ARFs), 
which are key-components of auxin signaling [34,35], have been 
described to be required for this process. Fahlgren et al. [36] reported 
that an increased accumulation of ARF3 transcripts promote the 
formation of abaxial tracheas in Arabidopsis thaliana. Likewise, in 
tomato (Solanum lycopersicum) is has been observed that SlARF3 
down-regulation by applying a RNAi approach significantly reduced 
the trichome density in leaves [37]. On the other hand, plants also 
limit phytophagous attacks by increasing leaf rigidity and stem 
strength through the lignification of their cell walls. In this regard, 
wounding and JA have been associated with lignin biosynthesis 
through the transcriptional regulation of a series of wound-
induced genes, as for example the CAFFEIC ACID-O-METHYL 
TRANSFERASE (COMT) [38], which encodes an enzyme implicated 
in the synthesis of G-lignin [39]. Alternatively, quite some time ago, 
Vanholme et al. [40] reported that auxin stimulation induced lignin 
formation in the secondary xylem of Coelus blumei. In Arabidopsis, 
the constitutive overexpression of YUC8 and YUC9, two key enzymes 
in IAA biosynthesis, has been reported to translate into enhanced 
lignification [41]. Further underlining the role of increased IAA levels, 
the tobacco auxin overproducer mutant 35S-iaaM/iaaH has been 
described to show increased peroxidase gene transcription levels [42]. 
Peroxidases are known to be involved in the polymerization of lignin 

monomers [39]. Thus, it appears tempting to speculate that JA-IAA 
crosstalk can mediate lignin biosynthesis in response to challenges 
by biotic foes. The positive interplay between mechanical defense 
and auxin becomes also evident during the process of herbivore 
recognition. Perception of a predator challenge mainly occurs after 
egg deposition or feeding. For pea (Pisum sativum) it is known that 
ovoposition stimulates cell division and neoplasm formation at the 
egg location, with the intention of impeding the entry of larvae [43]. 
In agreement with this, the positive effect of auxin in cell division 
has been well documented [15,44]. Moreover, experiments with the 
gall-inducing caterpillar Gnorimochema gallaesolidaginis showed a 
significant increment of IAA contents in galls. Thus, although further 
elucidation is required, it can be hypothesized that egg perception 
can activate auxin biosynthesis in the host plant. On the other hand, 
phytophagous predator herbivory commonly entails disruption of 
plant tissue integrity. It is well characterized that after wounding 
or oral elicitation the production of the bioactive JA, jasmonoyl-L-
isoleucine (JA-Ile), is stimulated [45]. Subsequently, synthetized JA-
Ile is perceived by the F-box protein CORONATINE INSENSITIVE 
1 (COI1) [46]. As shown in (Figure 1A), the perception of JA-ILE 
enables the SCFCOI1 complex to bind and ubiquitinate specific 
repressor proteins, the so-called Jasmonate ZIM Domain (JAZ) 
family of transcription repressors. The JAZ repressors are, in turn, 
labeled for degradation by the 26S proteasome, thereby relieving 

Figure 1: Comparison between JA and IAA signaling in Arabidopsis A) At high levels, the bioactive jasmonate JA-Ile is perceived by the F-box receptor 
CORONATINE INSENSITIVE1 (COI1). The SCFCOI1-E3 ligase multiprotein complex, including COI1, ARABIDOPSIS S-PHASE KINASE PROTEIN1 (ASK1), 
CULLIN1 (CUL1), and RING-BOX1 (RBX1), mediates the ubiquitination and degradation of the JASMONATE ZIM DOMAIN (JAZ) transcriptional repressors 
through the 26S proteasome, thereby releasing the repressor COMPLEX-NINJA-TOPLESS and the MYC family of transcriptional factors. This culminates with 
the activation of the JA-responsive genes. B) TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN SIGNALING F-BOX1-4 (AFB), are F-box proteins that 
function as auxin receptors. TIR1 is known to form part of the SCF protein complex, which comprises the ASK1, CUL1, and RBX1. In presence of biological levels 
of IAA, the bioactive hormone is bound to the bottom of a cavity located at the surface of the TIR1 receptor. After binding, the affinity of TIR1 for the AUX/INDOLE-
3-ACETIC ACID (Aux/IAA) transcriptional repressors increases. Subsequently, the SCFTIR1-E3 ligase mediates the ubiquitination of the bound Aux/IAA protein 
and their degradation via the 26S proteasome. The ubiquitin mediated proteolysis of Aux/IAA results in the liberation of the co-repressor TOPLESS and the Auxin 
Responsive Factor (ARFs), thereby, permitting ARFs to control the transcription of auxin responsive genes.
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MYC transcription factors from repression and triggering the 
expression or different subsets of JA-responsive genes [47-49]. 
Analogously, auxin perception shares a conserved signal transduction 
mechanism that also uses the 26S-proteasome apparatus (Figure 1B). 
Importantly, it has been observed that a point mutation of a SCF 
subunit of Arabidopsis resulted not only in reduced auxin response, 
but also in a diminished expression of several specifically JA-induced 
genes, indicating a reduction in JA sensitivity [50]. This evolutionary 
connection emphasized the value of the synergistic interaction 
between the two plant hormones, JA and IAA, for the fine-tuning of 
plant stress responses. As aforementioned, elicitation by oral secretion 
or wounding play prominent roles in herbivore attack perception. In 
relation to this, the polymer of N-acetyl-β-D-glucosamine, commonly 
termed chitin, is a structural component of insect and spider mite 
exoskeletons, as well as fungal cell walls and nematode egg [51-54]. 
However, it has never been reported in plant cell walls. Chitin is a 
recognized elicitor of plant defense responses [53,55,56], being an 
important activator of JA-signaling [57]. Recently, Lopez-Moya et 
al. [58] demonstrated that chitosan, a deacetylated form of chitin, 
which is widely used in agriculture, stimulates the production of 
auxin through the modulation of two auxin biosynthetic genes, YUC2 
and AMI1, in A. thaliana. Remarkably, chitosan also induces the 
expression of MYC2. In addition, Hentrich et al. [59] further reported 
the induction of two IAA biosynthetic genes, YUC8 and YUC9, after 
the application of several oxylipins. In their work the authors also 
described the activation of YUC9 after mechanical wounding. This 
observation has recently been confirmed [60], showing the activation 
of YUC8 after Plutella xylostella larvae attack in A. thaliana. YUC8 
induction was accompanied by an elevation of IAA levels in the place 
of damage, but also in distal parts, such as roots. Therefore, further 

elucidation of the molecular mechanism underlying auxin transport 
upon herbivory attack will help to shed light onto the role of auxin 
in tolerance against pathogens. In the same way, the exposition of N. 
attenuata plants to M. sexta herbivory leads to a significant increase 
of IAA levels in leaves and roots of attacked plants [61]. In a later 
study, Machado et al. [62] reported that the M. sexta-mediated 
increase of IAA in N. attenuata correlates with a rapid induction of 
several YUC-like genes. Additionally, the authors demonstrated that 
the simultaneous application of IAA and methyl jasmonte (MeJA) 
induces the production of anthocyanin in N. attenuate, which is 
believed to acts as a chemical repellent [63]. This observed induction 
was further reproduced under real or simulated M. sexta attack using 
A. thaliana.

A Role of Auxin in Indirect Defense
Indirect defense is based on the capability of attacked plants 

to emit volatile organic compounds (VOCs), such as terpenoids, 
glucosinolates, fatty acid derivatives and ET, to attract natural 
enemies of herbivores [23-25]. A broad number of genes relates to 
VOC production are induced by JAs [26]. However, earlier studies 
indicated that IAA is capable of stimulating ET production through 
the activation of specific ACC-synthase genes, which encode 
enzymes involved in a rate- limiting step in this process [64-66]. In 
Arabidopsis, it has been demonstrated that the overproduction of 
auxin mediated by YUC8 and YUC9 likely results in increased ET 
production, as these lines are less sensitive to the ET biosynthesis 
inhibitor 2-aminoisobutyric acid [41]. Thus, it may be concluded 
that a hormonal cascade employing JA, IAA, and ET contributes to 
plant defense responses. The main role of VOC emission is to prepare 
(prime) distal tissues or neighboring plants for a possible imminent 

Figure 2: Summary of IAA-related targets involved in tolerance against herbivore foes. The figure contrasts the different auxin-related modules activated in direct 
and indirect plant responses.
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attack. Such a VOC-mediated induction of the defense machinery 
can provide substantial advantages to responding plants, providing 
time for the production a battery of secondary metabolites to deter 
potential aggressors. Interestingly, the chemical communication 
between plants seemingly involves the canonical auxin perception 
pathway, too. Sweeney et al. [67] reported that mechanical wounding 
stimulates both root growth and the activation of auxin signaling, 
as analyzed by using the DR5: GUS reporter line, in neighboring 
unwounded A. thaliana plants. 

Conclusion
Taking all these observation into account, we conclude that 

although elicitation of the JA-mediated response is the primary event, 
reconfiguration and adjustment, respectively, of IAA biosynthesis 
and signaling is likely to contribute to direct/indirect plant resistance 
against herbivory (Figure 2). However, many questions still remain 
elusive and require more detailed investigations in the future.
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