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Abstract

In this paper, an effort have been made to standardize parameters 
of oxidative membrane damage (membrane lipid) and elicitation ability of 
polyphenolic compounds for the assessment of drought stress tolerance of an 
Indigenous aromatic rice cultivar, commonly cultivated in West Bengal, India. 
Imposition of different magnitude of drought stress (-0.344 MPa, -0.851 MPa, 
-1.619 MPa) at germination stage (through Polyethyleneglycol-6000 treatment) 
to the experimental cultivar revealed a dose-dependent response in terms of 
accumulation of total ROS, thiobarbituric acid reactive substances, conjugated 
diene and hydroperoxide and activity of lipoxygenase. The level of accumulation 
of all these oxidative stress parameters further showed strong correlation with 
germination and early growth parameters. Treatment, which exhibited highest 
accumulation of hydroperoxide, thiobarbituric acid reactive substances and 
conjugated diene, exhibited lowest germination and early growth performances 
(T50 value, relative germination performance, relative growth index, germination 
rate index etc.). RP-HPLC of extractible phenolics from seedlings raised from 
different magnitude of drought stress, exhibited dose-dependent accumulation 
of phenolic acids (gallic acid, chlorogenic acid, caffeic acid, sinapic acid, 
p-coumaric acid) and flavonoids (rutin, kaempferol, myricetin, apigenin). The 
accumulation of flavonoids and phenolic acids in drought stress raised seedlings 
found to be inverse to the oxidative membrane lipid damages and has strong 
impact on subsequent germination.

Keywords: Drought; Lipid peroxidation products; Phenolics; Stress 
biomarker

Introduction
Drought is the single most important environmental constraint 

that limit plant growth and development and limit productivity 
of crops [1,2]. Monitoring the effect of drought stress is extremely 
important from the point of view of its important assessment and 
screening. Selection of judicious reliable metabolic parameters for 
the drought stress impact assessment and screening depends on their 
sensitivity, reproducibility and application.

Drought, depending its severity, duration and stage of impact, 
largely affect the redox homeostasis, of plants by altering ROS-
antioxidant interaction at metabolic interface [3,4]. Decontrolled 
ROS generation always leads to oxidative deterioration of cellular 
macromolecules [3,5]. Membrane lipids are one of the most important 
immediate targets of the drought induced oxidative stress [3,4]. 
Membrane Lipid Peroxidation (MLP) is the single most important 
response that not only gets aggravated but also contributes further to 
the oxidative stress induced by drought [3,6].

Peroxidation of membrane lipid is one of the very few example of 
carbon centred ROS production event in plant cell which essentially 
involves initiation, prevention, termination and propagation 
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events [3]. The mechanism is basically triggered by abstraction of 
hydrogen from fatty acids or addition of ROS of membrane lipid, 
causing breakdown of membrane based PUFAs. Subsequently the 
oxygenation of carbon centred lipid radical (L·) takes place forming 
peroxy radicals (LOO·). LOO· formed subsequently generates organic 
hydroperoxides. Alkyl radicals formed can be stabilized with the 
formation of conjugated diene. In several instances, the enzyme 
lipoxygenase found to mediate the process, although there are 
strong evidences of non-enzymatic ROS-mediated membrane lipid 
peroxidation [3,7].

The products of oxidative MLP often been used by several 
workers to assess environmental stress assessment [8,9,7, 10]. Infact 
several analytical techniques are in practice for the assessment of 
stress induced MLP as a contrivance of understanding changes in 
redox status of tissue or oxidative stress suffered by plant under stress.

Plant’s ability to withstand drought stress largely depends 
on efficiency of antioxidative defense system that reflects ROS-
antioxidant interaction at metabolic level and determine the redox 
fate of the tissue [11,12]. Out of an array of antioxidative defense 
system, some secondary metabolites like polyphenolic compounds 
exerts strong antioxidant functions through their ROS scavenging 
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activity, metal chelating activity etc. [13,14]. In most of the cases an 
up-regulation of synthesis of poly phenolic compounds are found 
to be associated with environmental odds like drought [15-17]. 
Therefore, there are scattered evidences of drought stress induced 
accumulation of phenolic compounds but they are associated with 
redox regulation and mitigation of oxidative membrane damage and 
not yet been explored properly. Therefore, in the present work an 
effort have been made to explore the relationship between drought 
induced oxidative MLP and elicitation of polyphenolic compounds 
for the mitigation of oxidative stress. Further, the parameters of 
oxidative MLP and accumulation of redox-sensitive flavonoids 
and phenolic acids under drought were critically analysed for their 
suitability as redox biomarker of drought stress.

Materials and Methods
Plant growth and treatment of PEG-6000 to induce post 
imbibitional dehydration stress

As experimental material, seeds of the Indigenous Aromatic 
Rice Cultivar (IARC Oryza sativa L., Cultivar Badshabhog) was 
selected. It was collected from Crop Research and Seed Multiplication 
Farm (CRSMF), The University of Burdwan, West Bengal, India. 
Experimental seeds were washed with distilled water and then they 
were treated with 0.2% HgCl2 for 5 minutes for surface sterilization 
and again washed thrice with sterile distilled water. Then the seeds 
were kept for imbibition in distilled water in darkness at 25o±2oC for 
48 hours. Thereafter, they were sown in Petri plates on moist filter 
paper and were placed in seed germinator cum stability chamber in 
standardized conditions with 14 hour photo period (light intensity 
270 µmol m-2 s-1), 78±2% relative humidity and 25o±2oC temperature. 
PEG-6000 was used for imposing post imbibitional drought stress of 
different magnitude. Out of four different water-imbibed seed lots, 
three were treated daily with -0.344 MPa, -0.851 MPa and -1.619 MPa 
PEG-6000 and fourth seed lot was sown in petriplates containing 
moist filter paper absorbing sterile distilled water, representing 
untreated control set. All seed lots were allowed to grow for 7 days in 
aforesaid conditions and then used for biochemical analyses.

Estimation of membrane lipid peroxidation
Test for Accumulation of Thiobarbituric Acid Reactive Substances 

(TBARS) to estimate membrane lipid peroxidation was performed 
following the process of [18]. Seedling sample of 200 mg was 
homogenized with 0.1% Trichloroacetic Acid (TCA) and centrifuged 
at 10,000 rpm for 15 minutes. Supernatant was collected. 1mL of 
supernatant and 3 mL of 5% TCA containing 1% Thiobarbituric Acid 
(TBA) were mixed and was kept in hot water bath for 30 minutes. 
After cooling immediately in cold water bath, again centrifuged at 
10,000 rpm for 10 minutes. The spectrophotometric estimation of the 
supernatant at 530 nm was done. The measurement of concentration 
of TBARS was calculated by its extinction coefficient (155 μM cm-1) 
and expressed in n mol g-1 dry mass of seedling tissue.

Estimation of Hydroperoxide
The method of [19] was followed with some necessary 

modifications for estimation of hydroperoxide. Seedlings were 
homogenized with 150 mM tris-HCl (pH-6.8) and supernatant was 
collected after proper centrifugation. The assay mixture containing 
an aliquot of sample extract, 0.25 mM H2SO4, 250 mM ammonium 
ferrous sulphate, 4 mM BHT (in 90% methanol) and 100 mM xylenol 

orange was incubation at room temperature for 30 minutes. Then 
triphenyl phosphine (100 mM) was added and the absorbance was 
taken at 560 nm.

Estimation of Conjugated diene
Conjugated diene was estimated by following the method of [20]. 

Seedling tissue was homogenized with chloroform: methanol mixture 
(2:1). After vigorous vortexing the homogenate was centrifuged at 
2000 rpm for 10 minutes. From the supernatant the lower chloroform 
layer was collected and dried at 45°C under steam of nitrogen by 
rotary vacuum evaporator. The obtained residue was dissolved in 
cyclo-hexane and measured at 230 nm.

Estimation of Lipoxygenase activity
Lipoxygenase activity was measured by following the method of 

[21]. For the extraction of enzyme centrifugation at 5000 rpm was 
performed. Then re-centrifugation performed at 17000 rpm in cold 
condition by adding 50 mM sodium-phosphate buffer (pH-6.5). Then 
the assay mixture was made containing enzyme extract, 1.3 mM 
linoleic acid and 1.65 mM sodium-phosphate buffer (pH-6.5). The 
assay mixture was kept for incubation for 1 hour at 25°C. Finally 
absorbance was taken at 234 nm.

Estimation of total ROS generation
Total ROS generation was estimated by following the 

method of [22]. 30 mg of seedling tissue of cultivar Badshabhog 
was put in 40 mM TRIS–HCl buffer (pH-7.0) containing lM 2’, 
7’-dichlorofluorescindiacetate at 30o C. After 60 min, supernatant was 
removed and fluorescence was monitored in a spectrofluorometer 
(Hitachi, Model F-4500 FL Spectrophotometer) with excitation at 
504 nm and emission at 525 nm. Additional controls were performed 
to differentiate ROS from other long-lived substances able to react 
with DCFDA. For additional controls, tissues were incubated without 
DCFDA (60 min) and then tissues were removed. Then DCFDA was 
added. After 60 min, fluorescence was determined. To assess the 
fluorescence of ROS, this florescence values was subtracted from all 
readings.

Quantitative assessment of phenolic acids and flavonoids 
by RP-HPLC

Sample preparation: Samples were prepared from dry powdered 
seedlings through soxlet mediated hydro-ethanolic extraction. 
Further, the sample was concentrated by using rotary vacuum 
evaporator. For HPLC study, the volume of sample taken was 20µl 
[23].

RP-HPLC analysis of phenolic acids and flavonoids: Dionex 
Ultimate 3000 liquid chromatograph including a Diode Array 
Detector (DAD) with 5 cm flow cell and with Chromeleon system 
manager as data processor was used for HPLC analyses. Separation 
was achieved by a reversed-phase Acclaim C18 column (5 micron 
particle size, 250 x 4.6 mm). All extracted solutions were filtered 
through HPLC filter 0.45 mm membrane filter (Milipore). Methanol 
(Solvent A) and 0.5% aquous acetic acid solution (Solvent B) were 
used in mobile phase and the column was thermostatically controlled 
at 25oC. The injection volume was of 20 μl. A gradient elution was 
performed by varying the proportion of solvent A to solvent B. 
Phenolic acids and flavonoids in the sample extracts were quantified 
by the measurement of the integrated peak area. The contents were 
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calculated by using the calibration curve by plotting peak area against 
concentration of the respective standard sample. Standard stock 
solutions of eight flavonoids and forteen phenolic acids like Catechin, 
Naringin, Rutin, Myricetin, Quercetin, Naringenin, Apigenin 
and Kaempferol, Gallic acid, Protocatechuic acid, Gentisic acid, 
p-Hydroxy benzoic acid, Chlorogenic acid, Vanillic acid, Caffeic acid, 
Syringic acid, p-Coumaric acid, Ferullic acid, Sinapic acid, Salicylic 
acid, Ellagic acid were prepared in methanol (10 μg ml-1). All standard 
solutions was filtered through HPLC filter 0.45 mm membrane filter 
(Milipore).

Determination of germination performances and post 
germinative growth performances

Germination and early growth performances [24,25,26] of PIDS-
raised IARCs vis-a- vis their untreated control were assessed in terms 
of Germination Rate Index (GRI), T50 value of germination, Relative 
Growth Index (RGI) and Relative Germination Performance (RGP) 
by the formulae as follows:

Germination Rate Index (GRI)

 
Ni
i

 Σ 
 

T50 value

Time (In hour) of 50% germination of seeds sown

Relative Growth Index (RGI) 
averagedry massof ten treatedseedlings 100
averagedry massof ten controlseedlings

×

Relative Germination Performance (RGP)

Percentageof germination under treatment 100
Percentageof germination under control

×

Results and Discussion
The oxidative damage of membrane lipid that aggravates under 

PIDS of the experimental aromatic rice cultivars can be exploited as 

reliable index of secondary oxidative stress, which convey the status 
of internal redox cue. All the parameters pertaining oxidative lipid 
peroxidation like accumulation of ROS, TBARS, Hydroperoxide 
(HPOX), Conjugated Diene (CD) and activity of Lipoxygenase 
(LOX) were assessed in seedlings raised from different magnitude 
of PIDS (-0.344MPa, -0.851MPa, -1.619MPa) (Figure 1), (Table 1). 
The result in general showed a dose-dependent aggravation of MLP. 
When the extent of MLP was assessed in terms of accumulation of 
TBARS in the seedlings raised from different magnitudes of PIDS, 
a dose-dependent increament of MLP was observed (Figure 1). The 
same trend of result was observed when we assessed and compared 
the accumulation of other secondary MLP products like HPOX and 
conjugated diene (Figure 1). There is infact an increament of 5.53%, 
49.74% and 37.39% TBARS, HPOX and CD in PIDS (-1.619MPa)-
raised seedlings over their corresponding untreated control. The 
increament of lipoxygenase for -0.344MPa and -0.851MPa-raised 
seeling though found to be only marginal but -1.619MPa-raised 
seedlings exhibited significant increament (Figure 1). Therefore, the 
result in general exhibited significant dose dependent accumulation 
of all oxidative lipid peroxidation products (DCFDA oxidation, 
TBARS, HPOX and CD) with correspondingly enhanced activities of 
LOX in PIDS-raised sedlings.

In order to evaluate the role of polyphenolic compounds in the 
regulation of PIDS induced redox homeostasis in the experimental 
rice seedlings, RP-HPLC based identification and quantitative 
estimation important redox sensitive flavonoids and phenolic acids 
was done. The result in general showed significant dose-dependent 
accumulation of rutin, kaempferol, myricetin, apigenin, gallic acid, 
chlorogenic acid, caffeic acid, sinapic acid and p-coumaric acid in 
PIDS raised seedlings over untreated control, implying significant 
role in redox-regulation (Figure 2). Out of all these compounds, Rutin 
and p-coumaric acid showed maximum elicitation under drought.

For understanding whether PIDS-induced oxidative MLP has 
any impact on germination or early growth performances, several 

Figure 1: Impact of different magnitude of post imbibitional dehydration stress (PIDS: -0.344 MPa, -0.851MPa and -1.619 MPa) on enzymatic membrane lipid 
peroxidation (assessed in terms of accumulation of hydroperoxide, conjugated diene, TBARS and lipoxygenase activity) of Indigenous aromatic rice cultivar (IARC- 
Badshabhog). Results are mean of three replicates ± standard error. *Significant from control at 0.05 level (t-test). **Significant from control at 0.01 level (t-test).
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parameters like Relative Germination Performance (RGP), T50 value, 
Germination Rate Index (GRI) and Relative Growth Index (RGI) were 
assessed and compared. The result in general exhibited significant 
inverse correlation between oxidative MLP and early growth 

performances (Table 1). The greater the magnitude of oxidative MLP 
under PIDS more was the inhibitory impact on germination and early 
growth performances. Regression analysis between germination/early 
growth parameters (T50 value, GRI, RGI and RGP) and parameters 

Figure 2: HPLC chromatogram of extracted polyphenolic compounds from seedlings of Indigenous aromatic rice cultivar (IARC-Badshabhog) raised from different 
magnitude of post imbibitional dehydration stress (PIDS; -0.344 MPa and -1.619 MPa) and untreated control.
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cultivar
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(MPa)

Accumulation
of flavonoids
(µg/100g dm)

Accumulation
of phenolic acids

(µg/100g dm)

Accu-
mulation

of
total ROS
(DCFDA 

oxidation)
(AU mg-1 dm)

Accu-
mulation

of
conjugated 

diene
(n mol g-1dm)

Accu-
mulation 
of hydro-
peroxide
(A560 g-1 
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A
C
I

Untreated 
control 4.8 1.6 - - 73.2 57 1.77 - 0.03 98.68±0.16 227.63±0.54 9.47±0.02 75 ±0.23 100±0.00 43.15±0.07 100±0.00

-0.344 6.07 2.60 - 0.46 - - - - - 53.28±0.10** 239.25±0.51** 9.95±0.04** 120±0.41 120.00±0.68 44.14±0.07** 104.12±0.68

-0.851 - - - - - - - - - 92.30±0.11** 311.63±0.49** 10.91±0.05** 100±0.82 100.00±0.27 41.82±0.03** 101.03±0.41

-1.619 16.77 2.70 21.67 7.73 86.33 65.27 1.87 3.83 9.57 113.41±1.40* 312.75±0.30** 14.18±0.06** 100±0.27 92.00±0.22** 36.74±0.05** 109.28±0.98

Table 1: Impact of post imbibitional dehydration stress of different magnitude (PIDS: -0.344 MPa, -0.851 MPa and -1.619 MPa) on the synthesis of redox-sensitive 
polyphenolic compounds (rutin, kaempferol, myricetin, apigenin, gallic acid, chlorogenic acid, caffeic acid, sinapic acid and p-coumaric acid), oxidative membrane 
damage (total ROS, conjugated diene and hydroperoxide) and early growth performances of the Indigenous aromatic rice cultivar (IARC- Badshabhog). Results are 
mean of three replicates ± standard error. *Significant from control at 0.05 level (t-test). **Significant from control at 0.01 level (t-test).
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of oxidative MLP (HPOX, CD and TBARS) showed significant 
correlation (R2 value) in most of the cases (Figure 3). 

In the present investigation, osmotic stress was imposed 
to germinating seedling of experimental aromatic rice cultivar 
(Badshabhog) by using PEG-6000 in different doses in the growing 
media. PEG being inert, non-ioning, impermeable and water binding 
polymer mimic drought stress to the experimental plants [27,10]. 
Drought stress induced changes in internal redox homeostasis due 
to imposition of secondary oxidative stress is a well-recognized 
phenomenon that has direct connection with growth, development 
and yield of the crops [28,7,27].

Present experiment entitled a strong correlation between dose-
dependent PIDS-induced oxidative membrane damage and early 
growth performances of germinating seeds. The oxidative membrane 
damage was assessed in terms of accumulation of ROS (DCFDA 
oxidation) and enzymatic MLP (assessed in terms of accumulation 
of HPOX, CD and TBARS and LOX activity). Oxidative MLP is 
one of the prime event under drought that possess several adverse 
and physiological consequences [29,7,6]. This process disrupts not 
only membrane architecture but also generates ROS and other toxic 
secondary products, further aggravating the membrane damage and 
cellular homeostasis [5,6,12,29]. 

Conjugated dienes, formed from oxidation of PUFAs as the 

Figure 3: Regression curve showing the relationship between early growth parameters and the product of oxidative membrane lipid peroxidation (Hydroperoxide, 
TBARS and conjugated diene).

intermediates of MLP along with Malondialdehyde and other 
hydroperoxides the end products of MLP are accepted markers of 
oxidative stress [6,12,30,31]. Therefore, in the present study, the 
assessment of byproducts of MLP under different magnitude of PIDS 
exhibited strong correlation with germination and early growth 
performances of the experimental rice cultivar. This result also 
strongly substantiated by other studies [27,32,33,7].

The role of non-enzymatic antioxidants like phenolic acids and 
flavonoids are tested in PIDS raised redox-regulation of experimental 
rice seedlings. The result in general showed up-regulation of 
synthesis of some redox sensitive phenolic acids and flavonoids 
(rutin, kaempferol, myricetin, apigenin, gallic acid, chlorogenic 
acid, caffeic acid, sinapic acid and p-coumaric acid). In fact, all these 
compounds are derived from their important metabolic routes viz. 
phenylpropanoid pathway, pentose-phosphate pathway and sikkimic 
acid pathway. There are instances of strong elicitation of several 
phenolic acids and flavonoids under environmental stress [34,35]. 
Apart from other important physiological roles both flavonoids and 
phenolic acids exert their strong antioxidative properties because of 
their strong reducing ability through H-donation to ROS, quenching 
of 1O2 and metal chelation [36,37,12]. Flavonoids can also up-regulate 
antioxidative defence system and regulate redox homeostasis of the 
cell [38]. Flavonoids even can mitigate MLP by interfaring with 
chain propagation reaction [12]. Rutin in particular chelate iron (Fe), 
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necessary for MLP [38].

Conclusion
The susceptibility of newly assembled membrane system towards 

oxidative MLP and elicitation of redox-sensitive polyphenolic 
compounds to combat such deteriorative event under PIDS to the 
aromatic rice cutivar determine the redox status of the germinating 
tissue and early growth performances as well. Estimation of 
parameters of MLP (HPOX, TBARS, CD, LOX activity, DCFDA 
oxidation) along with redox sensitive flavonoids and phenolic acids 
can be used as sensitive biomarkers of drought stress.
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