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Abstract

Bionanotechnology is an emerging interdisciplinary field which comprises of 
biotechnology and nanotechnology. In bionanotechnology, biological molecules 
are used in order to improve the applicability of nanomaterials. Synthesis 
of stable and functional bio-hybrid, biomimetic, self-assembled materials 
is important applications of bionanotechnology. Bio-hybrids are advanced 
materials which offer dual functionality and improved features. These materials 
have far fetching impact in the field of remediation, biosensor, biocatalysis and 
drug delivery. Herein, the focus is on the silica based bio-hybrid materials and 
their applications. 
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Introduction
Biological materials like microorganism, enzymes (biocatalysts) 

etc., are valuable for various bioprocess applications. However, certain 
limitations associated with biomolecules like poor mechanical and 
chemical stability need to be addressed. Biotechnology is the discipline 
wherein the focus is on the application of biological components like 
organisms/their product/their part such as enzymes and Genetically 
Modified Organisms (GMOs) to produce products and processes 
which are useful to mankind. In other words, biotechnology creates 
wealth using biological molecules. Different methods of genetic 
engineering are used as tools for modification in the genetic material 
of the organism of interest in order to improve the required features 
in organism. Genetically Modified Organisms (GMOs) are further 
used for the production of various products like enzymes, antibiotics 
and vaccines etc. [1]. Biotechnology has enormous scope for use in 
health care, agriculture, food industry, environmental clean-up and 
biofuel. 

Immobilization is another aspect in biotechnology used to 
improve the applicability of biological molecules. Immobilization is a 
simple and efficient method wherein a biological molecule is attached 
to a suitable support which provides a favourable micro-environment 
to the biomolecule and improves the various physico-chemical aspect 
of the immobilized biomolecule [2]. There are various methods of 
immobilization like adsorption, covalent attachment, gel entrapment, 
microencapsulation etc., (Figure 1). For efficient immobilization, 
suitable immobilizing supports with features like high surface area, 
biocompatibility, stability etc., are required. A wide range of supports 
varying from organic to inorganic supports have been explored for 
immobilization [3-10]. In recent years, nanoparticles have emerged 
as suitable immobilizing support. The unique quantum phenomenon 
at the nanoscale size is responsible for beneficial and unique features 
of nanomaterials. Scientists are in constant search for developing 
advanced materials through use of nanoparticles for various 
applications like drug delivery systems, biosensors with increased 
sensitivity, efficient and recoverable immobilizing supports and 
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sorbents with high sorption capacity.

Silica nanoparticles (silica NPs)
Inorganic nanoparticles are well known immobilizing supports 

due to high stability, mechanical resistance and good sorption 
capacity. Previously, nanoparticles of aluminium, zirconium and 
titanium oxides have been explored as immobilizing support 
for different enzymes [11-13]. Due to its wide availability, easy 
functionalization and biocompatibility, silica nanoparticles are one of 
the most suitable inorganic supports for immobilization and various 
other applications [14]. Also, silica allows efficient bio-component 
attachment due to availability of several silanol groups on its surface 
and reduces diffusional limitations. 

Colloidal silica NPs have been used as catalytic supports [15-17], 
biosensor supports [18-21], remediation [22-25] and drug carriers 
[26-29]. For various applications, commercially available colloidal 
silica is used because naturally available mineral silica is contaminated 
and is not suitable for application in scientific research and industrial 
applications [30]. Also, mineral silica offers less surface area (with 
a few exceptions) and exists in crystalline form which is damaging 
to health. Thus, for most of the applications chemically synthesized 

Figure 1: Immobilization and various methods of immobilization.
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colloidal silica is preferred.

Bionanotechnology
Bionantechnology is an emerging interdisciplinary field wherein 

a biological molecule is applied to improve the applicability of 
nanomaterials by synthesizing bio-hybrid, self-assembled and 
advanced materials. On the other hand, nanobiotechnology deals 
with application of the nanodevices/nanotechnology to understand 
a biological phenomenon or structure of a biological molecule 
[31]. In principle bionanotechnology and nanobiotechnology is 
a combination of biotechnology and nanotechnology (Figure 2). 
Bionanotechnology will help to understand the following aspect:

(a)	 The interaction between a biological and non-biological 
(nanoparticles) components

(b)	 Developing efficient drug delivery systems for targeted 
drug delivery

(c)	 To understand and study toxicology

(d)	 Developing highly sensitive and miniature screening 
systems

Important application of bionanotechnology is to help in the 
development of advanced materials like bio-hybrids, biomimetic, 
self-assembled materials in order to address the issues associated with 
conventional materials.

Silica based bio-hybrid materials
A hybrid material is a mixture of inorganic components 

and organic components, or both types of component [32]. The 
combination of silica nanoparticles (as inorganic component) with 
organic materials results in the synthesis of silica based hybrid 
materials [33]. Extensive work has been carried out on silica based 
hybrids and published wherein silica nanoparticles have emerged as 
suitable inorganic component [34-36]. The requirement for materials 
with advanced properties is continuously increasing. The efficiency 
of mesoporous silica for various applications is mainly due to their 
porous structure which allows molecules to diffuse into their large 
internal surface. However, need for functionalization, small pore 
size and limited accessibility to the internal surface creates are the 
bottlenecks which causes mass-transport issues. In this regard, 
by using a suitable method the bio-component of interest can be 
conjugated with nanomaterial and new ‘bio-hybrid’ materials can 

be developed. The conjugation between nanomaterial and bio-
component will lead to new functional materials with improved 
features. 

A number of advantages associated with silica, makes it a suitable 
inorganic component for the synthesis of bio-hybrid materials. From 
last decade “bio-hybrid” has gained attention wherein biological 
component acts as functional unit and inorganic component acts as 
structural unit and imparts dual functionality (Figure 3). Association 
of biological components with silica nanoparticles have opened a 
window of interest for synthesis and application bio-hybrids. 

Applications of silica based hybrid/bio-hybrid materials 
In present scenario, significant interest has been observed in 

the synthesis of silica nanoparticles based bio-hybrid materials with 
various sizes, shapes, morphologies and functional properties. These 
materials have gained popularity because of their advanced features 
and applied in various fields. Herein, the applications of silica 
nanoparticles in four major areas i.e. remediation, bioprocessing, 
biosensor and drug delivery are discussed (Figure 4). 

In the field of remediation
In previous studies, silica based supports like mesoporous silica 

and nanosize silica have been prepared for the remediation of metal 
pollutants like uranium [22-25]. Hybrid mesoporous silica was applied 
for removal of heavy metal and in another study, functionalized 
mesoporous silica showed excellent binding affinity for mercury (II) 
[37,38]. Among different forms of silica, SBA-15 gained attention as 
sorbent for metal remediation [39] because it is hydrothermally more 

Figure 2: Relation between bionanotechnology and nanobiotechnology.

Figure 3: Two components of a bio-hybrid and its improved features.

Figure 4: Applications of bio-hybrid materials.
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stable in comparison to MCM-41 [40]. To improve the performance 
of mesostructured silica, it was organically functionalized and used 
for the uptake of heavy metals [39,40]. 

Despite the several studies and motivating results, 
functionalization of mesoporous silica is still a big hurdle which 
is difficult to achieve in real environment. Thus, there is need to 
devise low cost methods to functionalize silica based support with 
improved features. To address the issue, we devised spray drying 
as a single step, efficient route to synthesize functionalized silica 
microstructures using microorganisms (Streptococcus lactis and 
Saccharomyces cerevisiae). Silica-Streptococcus lactis and silica-
Saccharomyces cerevisiae microstructures were prepared and applied 
for sorption of uranium (VI) and mercury (II), respectively [41,42]. 
Spray dried doughnut silica-Streptococcus lactis microstructures 
showed significantly rapid uranium removal and maximum sorption 
capacity (qmax) was 169.5 mg/g [41]. In case of silica-Saccharomyces 
cerevisiae microstructures more than 98% of total mercury sorption 
was observed in 30min and qmax was 185.19 mg/g [42]. These studies 
suggest, the use of spray drying technique as a simple route for 
the functionalization of silica based microstructures using micro-
organisms as functionalizing agent. It also helps to address the 
limitations associated with application of silica nanoparticles and 
micro-organism alone to be used for remediation. Also bio-hybrid 
has emerged as advanced material for the environment remediation.

In the field of biocatalysis
Among the available immobilizing supports in the field of 

enzyme technology, silica based supports stand out because of its 
beneficial features. Silica based materials are the best immobilizing 
support for immobilization of enzymes. Presence of functional 
groups on the surface of supporting material improves the enzyme-
support binding and therefore reduces the chances of leakage of 
immobilized enzymes. Lei et al. have observed that immobilized 
enzymes within functionalized mesoporous silica showed improved 
activity compared to free enzymes [43]. Chong et al. have also proved 
that the activity of Penicillin G Acylase (PGA) immobilized on vinyl-
functionalized mesoporous silica was higher than free PGA [44]. 
For efficient immobilization of enzymes and to maintain the activity 
and stability of immobilized enzyme, functionalized silica based 
supports are utilized as most suitable materials. However, limitations 
like substrate diffusion due to small pore size of mesoporous silica, 
its synthesis and multi-step functionalization processes are the 
bottleneck for its application as immobilizing support.

To overcome the above issues, dendtritic/fibrous bio-hybrid 
supports could be a possible solution. Our group has synthesized 
fibrous silica nanoparticles-Ocimum basilicum seeds bio-hybrid 
support and used it as immobilizing support for immobilization 
of invertase enzyme [10]. Swollen O. basilicum seeds show fibrous 
pellicular structure which was explored as template for assembly of 
silica nanoparticles. Incorporation of the nanoparticles results in an 
increase in the available surface area of the seeds and improvement 
in the physico-chemical properties. Another added advantage is 
that enzyme immobilized on bio-hybrids can be easily separated 
out and reused. Further, such type of fibrous bio-hybrids also have 
potential applications in other areas like remediation, carbon dioxide 
capturing, developing sensitive sensors, developing drug carrier and 

energy storage.

In the field of biosensor
Previously, enzymes immobilized on silica based supports have 

also been applied for developing biosensors [18-21]. Ponamoreva 
et al. have synthesized yeast-based self-organized hybrid for the 
application as biosensor [45]. Diana et al. have encapsulated 
genetically engineered Moraxella spp. cells using sol-gel technique 
for the detection of organophosphates pesticide [46]. 

Methyl Parathion (MP) is an insecticide used in agriculture [47]. 
However, it also causes harm to human health. For the detection 
of methyl parathion, microbial cells with Organophosphorous 
Hydrolase (OPH) enzyme which hydrolyzes MP into a coloured 
Product P-Nitrophenol (PNP), were immobilized on to a number 
of matrices and further explored as biosensor to detect MP [48-53]. 
Our group has observed that immobilized Flavobacterium sp. and 
Sphingomonas sp. could detect MP in the range of 1-20 ppm and 
storage stability in days [50-52]. However, the low sensitivity and poor 
storage stability in the previous studies motivated us to work for the 
improvement in the sensitivity (up to 0.1 ppm) as well as to improve 
the storage stability. To encounter the issue associated with previous 
methods, functionalized silica nanoparticles were associated with 
Sphingomonas sp. cells and immobilized on the 96 well microplate and 
associated directly with the optical transducer of microplate reader 
[14]. Immobilized bio-hybrid of functionalized silica nanoparticles-
Sphingomonas sp. significantly improved the sensitivity and storage 
stability of the biosensor. There was improvement in linear detection 
range from 1 – 10 ppm to 0.1 – 1 ppm which is in the range of MRL. 
Also, the storage stability of developed was significantly enhanced 
ten times. This study showed that interaction of functionalized silica 
nanoparticles with cells has positive impact on developing bio-
component and synthesized functional bio-hybrid was enough stable 
to improve the sensitivity as well as storage stability of biosensor for 
detection of methyl parathion pesticide. 

In the field of developing drug carriers
Silica based materials are suitable candidates for efficient 

drug delivery systems because of their unique characteristics [54]. 
Several studies have been carried out wherein mesoporous silica 
nanoparticles were applied as drug carriers for cancer treatment [26-
29]. Interestingly, the finding that cells can take up and internalize 
silica NPs without any cytotoxic effects has improved the practical 
applicability of applications of silica NPs as drug carriers [55]. 

For application of drug carriers in industry, there is need to 
produce the drug carriers in large scale under Good Manufacturing 
Practices (GMP) conditions with reproducibility and low cost. In 
view of this, we have synthesized silica nanoparticles-sodium alginate 
bio-hybrid as drug carrier for doxorubicin using spray drying [56]. 
Synthesized bio-hybrid drug carrier showed excellent drug loading 
efficiency. In vitro release study of entrapped doxorubicin in bio-
hybrid showed a slow and pH-responsive release. The intracellular 
uptake study and in vitro cytotoxicity results showed that the presence 
of silica NP along with sodium alginate provided an opportunity to 
enhance the drug concentration and their cytotoxicity to cancer cells. 
Thus, spray drying has emerged as an efficient technique for synthesis 
of drug carriers with high drug loading efficiency and also suitable for 
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cancer treatment. 

Conclusion & Future Prospective
Bionanotechnology (a combination of biotechnology and 

nanotechnology) is helpful to develop advanced materials with 
various beneficial characteristics. This utilizes beneficial aspect 
of biological systems to improve the utility of a nanomaterial. The 
important applications of bionanotechnology include synthesis 
of stimuli responsive materials, self- assembled bio-hybrids, bio-
mimetic biological assembly, drug delivery carriers and bioelectronics 
which supports biotechnological processes. 

In future, bionanotechnology could be applied to develop sensitive 
nanodevices and also to develop efficient in vitro processes using bio-
hybrids. Cancer  bionanotechnology  is also another growing area 
wherein one can address the limitations associated with conventional 
drug delivery systems by developing efficient and targeted drug 
delivery systems using bio-hybrids with less/no adverse effects to 
normal cells. In the field of biosensors, there is requirement to come 
up with efficient handy and easy to use instruments for detection of 
pesticides or other analytes using bio-hybrids.
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