
Citation: Tanaseichuk O, Khodabakshi A, Petrov D, Che J, Jiang T, et al. An Efficient Hierarchical Clustering 
Algorithm for Large Datasets. Austin J Proteomics Bioinform & Genomics. 2015;2(1): 1008.

Austin J Proteomics Bioinform & Genomics - Volume 2 Issue 1 - 2015
ISSN : 2471-0423 | www.austinpublishinggroup.com 
Tanaseichuk et al. © All rights are reserved

Austin Journal of Proteomics, Bioinformatics 
& Genomics

Open Access

Abstract

Hierarchical clustering is a widely adopted unsupervised learning 
algorithm for discovering intrinsic groups embedded within a dataset. Standard 
implementations of the exact algorithm for hierarchical clustering require ( )2O n  
time and ( )2O n  memory and thus are unsuitable for processing datasets 
containing more than 20 000 objects. In this study, we present a hybrid 
hierarchical clustering algorithm requiring approximately ( )O n n  time and 

( )O n n  memory while still preserving the most desirable properties of the exact 
algorithm. The algorithm was capable of clustering one million compounds within 
a few hours on a single processor. The clustering program is freely available to 
the research community at http://carrier.gnf.org/publications/cluster.

Keywords: Hybrid hierachical clustering; Hierachical clustering; K-means 
clustering; Large datasets

millions of compounds ideally should be hierarchically clustered and 
prioritized for acquisition. But in practice, informaticians resort to 
a greedy algorithm such as Sphere Exclusion [13], which relies on a 
predetermined similarity threshold. Second, instead of analyzing all 
compound profiles across a panel of screening assays, hierarchical 
clustering analyses have usually been compromised and restricted to 
~ 20 000 top screening hits due to memory limitations. Therefore, 
there exists a significant need to develop a hierarchical clustering 
algorithm for large datasets.

Approximating hierarchical clustering in subquadratic time and 
memory has been previously attempted [14-18]. However, these 
methods either rely on embedding into spaces that are not biologically 
sensible, or they produce very low resolution hierarchical structures. 
Our goal is to produce hierarchical results with the same resolution 
as the exact hierarchical method, although with less accuracy, while 
maintaining the bio/chemically meaningful distance metrics. For a 
dataset over 20 000 objects, we are limited by both ( )2O n memory and 
time. Therefore, a reasonable approximation needs to be introduced. 
We observe that if an exact hierarchical tree has been constructed, 
one can set a similarity cutoff such that tree branches above the cutoff 
are distant enough from each other and represent the coarse clusters 
of the dataset. The branches and leaves below the cutoff represent 
hierarchical structures within small-scale local vicinities. For a large 
dataset, we are often initially interested in a “zoomed out” view of the 
coarse clusters, then “zoom in” to neighborhoods of interest for a finer 
view of the intra-group structures. The two views are often considered 
to be the most beneficial properties of the hierarchical clustering. For 
example, in the aforementioned compound requisition problem, one 
would cherry pick vendor compounds from the coarse neighborhood 
if only a small number of compounds can be selected for purchasing. 
When budget and logistics permit, one could then lower the cutoff to 
pick more compounds within interesting coarse clusters.

To capture both distant and close views of the hierarchical 
structure for a large dataset, we propose a hybrid hierarchical 
clustering algorithm (Figure 1). Initially, the n objects are clustered 

Introduction
Clustering is a popular unsupervised learning technique used 

to identify object groups within a given dataset, where intra-group 
objects tend to be more similar than inter-group objects. There 
are many different clustering algorithms [1], with applications in 
biocheminformatics and other data mining fields [2,3], including 
studies on protein families [4], functional genomics [2], chemical 
scaffolds [5], etc. In particular, clustering algorithms have been widely 
adopted in the bioinformatics fields after Treeview [6], a user-friendly 
visualization program, was made available following early studies on 
gene expression datasets.

Among all clustering methods, hierarchical clustering and 
k-means clustering are arguably the two most popular algorithms used 
due to their simplicity in result interpretation. In the cheminformatics 
field, Wards clustering [7] and Jarvis-Patrick clustering [8] are 
corresponding algorithms similar in spirit to hierarchical clustering 
and k-means clustering, respectively. Although there is no definitive 
answer as to which algorithm is more accurate, hierarchical clustering 
has been applied more often in bio-/cheminformatics research 
because of its deterministic property and flexibility in flattening the 
resultant tree at different cutoff levels.

However, applying hierarchical clustering to large datasets is 
rather challenging. First, compared to the linear complexity of the 
k-means algorithm, the most popular average-linkage hierarchical 
clustering requires ( )2O n  time; we even observed ( )3O n -time 
implementations in some popular bioinformatics tools [9]. Second, it 
requires ( )2O n  memory [10], which limits the number of input data 
points to ~ 20 000 for a typical desktop computer. In bioinformatics 
research, functional genomics profiling data approaching this 
limit are routinely generated for the human genome [11]. In 
cheminformatics research, modern drug discovery applies ultra-
high-throughput screenings (uHTS) for several million compounds 
in one experiment [12]. Two problems arise from uHTS. First, to 
expand the screening compound collection, vendor catalogs of 
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by a k-means clustering algorithm, where k is chosen to be reasonably 
large, into roughly k coarse neighborhoods. We then apply the exact 
hierarchical clustering algorithm to cluster the k centroids into 
a coarse tree, as well as to the objects within each of the k clusters 
into k detailed trees. By replacing the k centroids in the coarse tree 
by the corresponding detailed trees, this two-step hybrid algorithm 
assembles a complete tree of n objects that can be cut, i.e., zoomed 
in and zoomed out, at various levels. The number k can be selected 
by the user and controls the cutoff reflecting the average similarities 
of objects within each coarse neighborhood. Practically, we cannot 
reliably distinguish data points positioned closer than the magnitude 
of the intrinsic noise of the data. Therefore, these data could be 
treated as one aggregated data object without losing meaningful 
interpretation of the data set. If the value of k is large enough, the 
size of individual k-means clusters approaches the intrinsic noise, and 
the k-means clustering step retains most of the essential information, 
thus the tree resulted from the hybrid algorithm could be considered 
as accurate as the one resulted from the exact AHC algorithm. If 
optimized for clustering speed, ~k n can be chosen to yield an 
approximate running time of ( )O n n and storage of ( )O n n as 
discussed later in detail.

In the past few years, other attempts have been made to combine 
hierarchical clustering with k-means. For example, hierarchical 
k-means [19] is a well-known divisive hierarchical clustering 
algorithm that constructs a tree by recursively bisecting the data with 
k-means. This method has a low time complexity of ( )log( )O n n , 
however, it may produce low quality clustering results. Specifically, 
for small values of k the algorithm inherits disadvantages of divisive 
clustering methods-high likelihood that similar objects may be 
separated during early stages of clustering, leading to low local 
accuracy of the clusters. Choosing larger values of k would potentially 
fix this, but at the expense of poor global clustering structure, since 
at the same level of recursion all clusters are connected at the same 
distance from the root in the complete tree. In contrast, in our hybrid 
algorithm we try to preserve both local and global clustering structure 
of the data simultaneously.

Materials
As our aim is to develop an algorithm for practical biomedical 

research applications, three real datasets encountered in our routine 
analyses were chosen. Dataset D1 is an activity matrix consisting of 

2117 compounds profiled across 398 cancer cell lines. A subset of this 
matrix was previously published as the Cancer Cell Line Encyclopedia 
project and was described in detail by Barretina et al. [20]. This dataset 
provides an example of a typical medium-size clustering problem 
involved in bioinformatics and cheminformatics research.

Dataset D2 is a larger high-throughput screening activity matrix 
of 45 000 compounds across 178 assays. This is a subset of the larger 
matrix described in a published HTS frequent hit study [21]. A 
total of 45 000 compounds that hit the most number of assays were 
selected, because this size approaches the upper limit of what an exact 
hierarchical clustering algorithm can handle on a typical desktop 
computer. This large dataset provides a test case to compare the speed 
of clustering and the qualities of resultant trees, when both the exact 
hierarchical clustering algorithm and the proposed hybrid algorithm 
are applied.

Dataset D3 consists of one million compounds randomly 
selected from our in-house compound collection, where the 
average Tanimoto structure similarity determined by ChemAxon 
two-dimensionalfingerprinting is merely 0.3 [22]. As structural 
redundancy of the collection is low, these compounds are expected 
to form numerous clusters of fairly small sizes. This set is chosen to 
represent the more challenging problem of identifying structurally 
diversified compounds from a large vendor catalog as well as to 
enable us to study the robustness of the hybrid algorithm.

Results
The hybrid algorithm

In this section, we introduce a hybrid algorithm for hierarchical 
clustering of large datasets. Our approach combines the advantages of 
the partitioning and agglomerative hierarchical clustering algorithms.

Hierarchical clustering organizes the data into a dendrogram 
that represents the clustering structure of the data. We only consider 
the bottom-up clustering approach here due to its ability to capture 
the local clustering structure of the data. The classic agglomerative 
hierarchical clustering (AHC) method [23] requires computation of 
all pairwise distances, which has a quadratic complexity. Therefore, 
the construction of the distance matrix creates a bottleneck, especially 
for high dimensional data and expensive distance functions. Since 
AHC algorithms greedily merge pairs of nearest data points (clusters) 
into tree nodes, the exact computation of pairwise distances is 
important for data points that are close enoughto each other, while 
the computation of distances between remote points is unlikely to 
contribute and should be avoided whenever possible. Therefore, it 
makes sense to partition the dataset to avoid the fulldistance matrix 
computation.

In the first step of the algorithm, we partition the data with 
k-means [24], a simple and effective clustering algorithm that 
generates a locally optimal partitioning of the data. The number of 
components k is predefined.The choice of k and performance of our 
algorithm with respect to k are discussed later in the paper. We apply 
the optimized version of the exact k-means algorithm, which utilizes 
a triangle inequality to avoid unnecessary distance computations 
[25]. The clusters are initialized uniformly at random from the 
data points. In the second step, at the first level, AHC is applied to 
cluster each individual component Pi obtained by k-means into an 

k-means

AHC

AHC/Hybrid

Figure 1: Hybrid hierarchical clustering pipeline. First, the objects are 
clustered by a k-means algorithm. Then, objects within each cluster are 
hierarchically clustered by either the exact agglomerative hierarchical 
clustering algorithm (AHC), or the hybrid method is applied recursively for 
large clusters. Finally, AHC is preformed to cluster k centroids and combine 
the trees into a complete tree.
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individual detailed tree Ti. At the second level, each Ti is treated as a 
leaf and clustered by AHC into a coarse tree T. T, therefore, reflects 
both the coarse relationships among components as well as detailed 
relationships among members of each component.

A few questions arise in the above procedure and require careful 
consideration: (1) How are distancesdefined between the components 
for the second level of clustering?(2) What should be done when the 
distance between a pair of component centroids is smaller than the 
radii of associated components?

Regarding the first question, the naive idea of taking the distance 
between the centroids of components as a pairwise distance between 
these components is undesirable. Consider two pairs of components, 
where the distance between the two centroids within each pair is the 
same. Additionally, assuming that the first pair of components have 
small radii while the other two components have large radii and may 
overlap. Clearly, the above naive approach would not capture the 
intuition that the second pair of components should be considered 
closer. We adopt the idea of data bubbles [26] and define the distance 
of twocomponents P1 and P2 as follows:

if
otherwise





1 2 1 2 NN 1 NN 2 1 2 1 2
1 2

NN 1 NN 2

d(C ,C ) - (R ,R )+d (P )+d (P ) d(C ,C ) - (R ,R )³0
d(P ,P )=

maxd (P )+d (P )

Here, Ci is the centroid of the partition Pi, and Ri is the radius 
of the component (most of the objects are located within the radius 
Ri around the centroid Ci), dNN(Pi) is the average 1-nearest neighbor 
distance within the component Pi.

Regarding the second question, for each component Pi, we define 
the distance threshold ri so that all points that are farther than ri away 
from the centroid are considered outliers and removed from the 
component. Outliers are added as individual points and used in the 
second level of hierarchical clustering.

In addition, due to the nonuniform distribution of objects within 
a real dataset, the k-means clusteringmight result in components 
that exceed the size limit of AHC. Therefore, the hybrid algorithm 
might need to be recursively applied in a divide-and-conquer 
manner. Occasionally, when the height of a detailed tree Ti exceeds 
its corresponding level-two centroid distance, its height should be 
propagated up to its ancestral nodes along the tree branches during 
the assembly of T.

Our hybrid algorithm is outlined in Algorithm 1.

The running time and memory analysis
We theoretically and experimentally evaluate the running time of 

the hybrid algorithm. First, let us show that with a reasonable choice 
of the partitioning parameter k, the algorithm runs in ( )O N N
time for datasets of randomly distributed objects. The running time 
of the algorithm is affected by (1) the time to partition the data in the 
k-means phase and (2) the running time of the hierarchical clustering 
phase. The traditional k-means algorithm requires computing kNL 
distances, where L is the number ofiterations. However, in the 
optimized version of k–means, only the first few iterations require 
distance computations from all the data points to all the centroids. 
The time needed for subsequent iterations drops significantly, because 
most of the distances are not computed. Thus the overall number 
of distance computations becomes closer to kN than to kNL. The 
k-means phase runs in ( )' ,O kNL  where L<L and can be estimated 

experimentally. In our experiments, L was in the range of 2 to 5. The 
running time of the hierarchical clustering phase includes the time 
required to hierarchically cluster k subsets of approximate sizes N/k 
and to cluster k centroids. Assuming quadratic time complexity for 
the AHC algorithm, the overall running time of the hybrid algorithm 
is O(k2 + N2/k + kNL). As the first term k2 is dominated by kNL, our 
algorithm runs in O(N2/k + kNL).  time. Thus, the minimum expected 
running time is achieved when k is set to N=L’, leading to ( )O N N  
time complexity. The same analysis applies to the memory complexity 
which is also bounded by ( )O N N .

We measured the experimental running time of the hybrid 
algorithm for different values of k, for both the partitioning phase 
and the hierarchical clustering phase. The results are shown in Figure 
2. Even though the real data is not uniformly distributed, trends in 
the experimental results agree with the theory. Note, that the exact 
algorithm matches the cases of k=1 and k = N. Clearly, the larger 
the data size, the more we gain in clustering speed compared to the 
exact algorithm. For example, when the parameters are optimized, 

begin
P ← ∅
Perform optimized k-means clustering to partition the data into components P i .
for each component  P i do

r i = argmin j dist (P i , P j )
Compute centroid C i
for each point p in P i do

if dist (p, C i ) > r i then
Remove p from P i . Add p to P .

for each component P i do
if size (P i ) > n then

Recursively apply hybrid clustering to generate a tree T i .

else
Apply AHC to generate a tree T i .

Compute a combined distance matrix for all P i and all points in P .
Perform AHC to generate a tree T .
return T

Algorithm 1: Hybrid clustering of N data points. Given k, the algorithm 
partitions the dataset and performs two-level hierarchical clustering to 
construct a tree T. (The maximum size of the input for the agglomerative 
hierarchical clustering (AHC) algorithm is n. It can be supplied by the user, or 
estimated automatically).
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Figure 2: Running time of the hybrid algorithm for datasets D1 and D2. (A) 
Dataset D1, for all values of k. (B) Dataset D1, zoomed in for k < 500. (C) 
Dataset D2. (D) Dataset D2, zoomed in for k < 1000.
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the hybrid algorithm is only 5 times faster on D1 while it is 370 times 
faster on D2, running in 22 seconds compared to 8117 seconds for 
the exact algorithm.

Performance analysis
There is no universal agreement on how clustering should be 

performed. Therefore, methods for validating clustering results vary 
significantly [27]. Since our primary goal is to accelerate AHC, the 
hierarchical tree T produced by the AHC algorithm is taken as the 
gold standard and is referred to as the exact tree. The tree produced by 
the hybrid algorithm is referred to as a hybrid tree or an approximate 
tree. Quantitative comparison between the exact tree and a hybrid 
tree remains an open problem and few results exist in the literature. 
One approach is to use a well-known tree edit distance [28], but it 
is computationally expensive and may produce counter-intuitive 
results [29]. Another popular approach is to cut trees at certain 
heights and measure similarity between the resultant clusters. The 
latter was chosen for this study, as it provides visualization that can 
be cross-examined by biological and chemical domain knowledge. 
Various similarity measurements are applicable to two sets of clusters 
resulting from tree cuts, e.g., Jaccard index [30], Rand index [31], 
Fowlkes-Mallows index [32], information theoretic measures [33], 
etc. Each method has its own advantages and weaknesses [34]. For 
example, the Rand index has an undesirable property of converging 
to 1 as the number of clusters increases, while the Fowlkes-Mallows 
index makes strong assumptions about the underlying distribution of 
data, making it hard to interpret the results. The information-theoretic 
approaches are promising for clustering validation, but require a 
more extensive evaluation. In our study, we chose the Jaccard index, 
one of the most common similaritymeasures for clustering.

For each of the two given datasets, we first cut the exact tree T at 
some height g, which was selected based on the combination of our 
domain knowledge of the bio- and cheminformatics problems and 
our visual inspection of the exact hierarchical tree T. This resulted 
in a set of clusters C(g) = {C1,C2,…,C|C(g)|}. The corresponding hybrid 
tree was then cut at different cutoff values h that would correspond to 
granularity. For each h, the Jaccard similarity index between C(g) and 
thehybrid clusters ( )

~
C h  was calculated according to:

~
11

11 10 01

J( (g),C( )) ,=
+ +

NC h
N N N

Where N11 is the number of object pairs consisting of objects 
clustered together into the same cluster in both C and

~
C . N10 +N01 is 

the number of object pairs consisting of objects clustered together in 
either C or

~
C but not both. The h value that led to the highest Jaccard 

index was retained and used for the similarity score 
~

( ) :gS T,T
~ ~

( ) argmax ( ( ), ( )).
∈

=g
h H

S T,T J C g C h

The set of cutoff values H was chosen to evenly cover different 
granularity levels of the resulting clusterings, where granularity is 
defined as a percent of object pairs that cluster together.

We are particularly interested in the approximation quality for 
biologically meaningful clusters with pronounced activity patterns. 
Therefore, in the computation of the similarity score, we disregarded 
clusters with low average Pearson correlation of the activity profiles 
(below 0.2) as well as small clustersthat contain less than 0.1% of the 

data. The selected clusters for datasets D1 and D2 are highlighted in 
Figures 3A and 4A, respectively. For the dataset D1, we additionally 
excluded a large cluster of low-activity compounds. Even though this 
cluster is well approximated by the hybrid algorithm, it dominates 
the resulting Jaccard index leading to an overall high similarity score. 
The results of the proposed similarity measures Sg on datasets D1 and 
D2 for the selected clusters are shown in Figure 5. It was observed 
that quality measurements for both datasets are rather in sensitive 
to the choice of k overa wide range. Since the hybrid tree  T retains 
both the coarse and detailed structures within a datasetand provides 
approximate results for interpretations in-between, it is not surprising 
that T reasonably approximates the exact tree. Since high quality trees 
are produced for a wide range of the parameter values, it makes sense 
to optimize the parameter k mainly for improved running time in 
practice.

Discussion
The implementation of the exact hierarchical clustering 
algorithm

We have been using a non-trivial assumption that AHC 
requires an ( )2O n  running time. The running times of specific 
AHC implementations actually vary significantly from the expected 

( )2 .O n  Cluster 3.0 [9] provides a popular AHC implementation that 
is used extensively in the bioinformatics field. For the average-linkage 
configuration, Cluster 3.0 implementation takes ( )3O n  time, as shown 
in Figure 6. For this study, we adopt the Murtagh reciprocal nearest 
neighbor idea [10], which offers a much improved ( )2O n  time. To 
test this, both Cluster 3.0 and Murtagh algorithms were implemented 
in Java and were applied to sample datasets sizing between 1 000 and 
20 000 (40 000 for the Murtagh implementation), where each data 
object consisted of double vectors of length 80. As shown in Figure 
6, the Murtaghmethod indeed performed at the scale of ( )2O n and 
Cluster 3.0 at ( )3 .O n These results are in agreement with the recent 

A

B

Figure 3: The hierarchical trees for the dataset D1. The trees are produced 
by (A) the exact algorithm and (B) the hybrid algorithm with k = 25. Highlighted 
are the biologically meaningful clusters selected for the evaluation of the 
approximation quality of the hybrid algorithm. The heat map illustrates the 
activity of compounds: red and green indicate active and inactive compounds, 
respectively.
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study [35]. It is worth mentioning that our Java implementation of 
Cluster 3.0 is two fold faster than the original C implementation, 
and the observation in Figure 6 is not an over-estimation. Note 
that although the Murtagh method has been used in the JKlustor 
program in the cheminformatics field [22], it is not widely adopted 
in bioinformatics. Therefore, bioinformatics researchers not using an 

( )2O n implementation of AHC could benefit from the release of our 
package.

Performance on a large dataset and robustness analysis
A major goal in proposing our algorithm is to provide a hierarchical 

method that is capable of clustering datasets that contain more than 
40 000 objects. Here, we studied dataset D3, which consists of one 
million compounds randomly selected from our in-house compound 
collection. Running AHC on such a large dataset is infeasible and 
cheminformaticians have relied on greedy algorithms such as Sphere 
Exclusion (SE) [13] to partition the compounds into clusters. SE 
requires a fixed similarity cutoff value as its input. It randomly selects 
a query compound and extracts all remaining compounds, where 
their structural similarities to the query compound are above the 
predefined threshold. The extraction and exclusion process is iterated 
until the collection is exhausted. Because the exact tree is not available 
for adataset as large as D3, performance comparisons between SE and 
hybrid algorithms can not be conductedin a manner similar to what 
we presented in Sections The Running Time and Memory Analysis” 
and Performance Analysis”. Nevertheless, we speculate that the 

hybrid method provides a result closer to the exact AHC tree than 
to SE. This is because no super-sized compound cluster is expected 
in D3 based on our domain knowledge, i.e., the sizes of chemically 
interesting clusters are small. The first k-means clustering step is 
expected to produce only large components of structurally diverse 
compounds and is unlikely to break down small groups of highly 
similar compounds. The SE algorithm, on the other hand, produced 
flattened clusters based on a rather subjective similarity threshold, 
which may not match the average similarities in small clusters.

A main criticism on SE is its greediness, which led to different 
clustering results in different runs in our experiment. As the hybrid 
algorithm also has a random component in the k-means stage, it 
would be interesting to compare the two methods for robustness in 
the results. We shuffled records in the one million compound dataset 
ten times and applied both algorithms. We then measured how well 
each method was able to reproduce its own results. In particular, we 
first applied a cutoff value to flatten hybrid trees into a similar number 
of clusters as in the output of the SE algorithm. Then, through random 
sampling of compound pairs in the output clusters, we estimated 
the probability that a pair of compounds will cluster together in 
consecutive runs to be 37.1% with a standard deviation of 0.9%15for 
the hybrid method, and 27.8% with a standard deviation of 1.6% 
for the SE methods (p-value is 1×e-10). Similarly, we also estimated 
the probability that a pair of compounds will not cluster together in 
consecutive runs to be 99.8% and 99.9%, respectively. These results 
indicate the superior robustness of the hybrid algorithms across 
multiple runs.

Conclusion
We have introduced a hybrid hierarchical clustering algorithm 

that requires approximately ( )O n n  running time and ( )O n n  
memory, producing hierarchical trees similar to what the exact 
hierarchical algorithm offers but applicable to much larger datasets. 
With three example datasets, the hybrid algorithm was demonstrated 
to be much faster, reasonably accurate and robust for clustering 
large datasets encountered in bioinformatics and cheminformatics 
research. The software package has been made available to the 

A

B

Figure  4: The hierarchical trees for the dataset D2. The trees are produced by 
(A) the exact algorithm and (B) the hybrid algorithm with k = 130. Highlighted 
are the biologically meaningful clusters selected for the evaluation of the 
approximation quality of the hybrid algorithm. The heat map illustrates the 
activity of compounds: the intensity of red is proportional to the compound’s 
activity.
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informatics community and should prove very useful when applied 
to a wide range of data mining problems.
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