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Abstract

Neurodegenerative diseases are becoming increasingly common as life 
expectancy increases. After Alzheimer’s Disease (AD), Parkinson’s Disease 
(PD) is the second most prevalent and incidental neurodegenerative disorder 
commonly affecting more than 2% of the elderly population of age 65. Because 
of the destructive consequences of PD and insufficient current management 
strategies, it is essential to develop an effective suite of preventative regimens 
and treatments. The main hurdle in the development of neuroprotective therapies 
for PD is the limited understanding of the key molecular mechanisms. The search 
for cardinal hallmarks, potential therapeutics and preclinical animal models are 
in progress. Examining therapeutic compounds and molecular pathways in 
human and animal models are limited due to high cost, ethical concerns and 
lengthy time frame. Invertebrate models are the best alternative in terms of 
cost, ethical concerns and time frame and up to some extent provided basic 
insight into the disease pathogenesis. In this review, we discuss the invertebrate 
models possibilities for gaining insight into the basic molecular mechanisms and 
pathways involved in PD pathogenesis as well as the screening of the potential 
therapeutic and neuroprotective compounds.

Keywords: Parkinson’s disease; Planaria; Tribolium castaneum; Drosophila 
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different kinds of researches in order to discover potent and novel 
drugs for the permanent treatment of PD and for this, they are using 
different experimental tools and disease models to get the ultimate 
effective results. Different disease models including both vertebrates 
and invertebrates have been using by different researchers and each 
model has its own capability of covering different technical aspects of 
the disease. Vertebrates including Rodents and Primates are closest in 
regards to human anatomy and these disease models have revealed key 
points and molecular pathways involved in PD progression regarding 
impacts of environmental toxins, age and genetic mutation on the 
disease fate. However, these vertebrate’s models have some limitations 
in the context of ethical concerns, high-throughput screening 
approaches for detection of genetics and chemical modifiers of certain 
phenotypes, time and cost. Due to the entanglement of the neuronal 
network, monitoring of in vivo subcellular processes in vertebrate’s 
models is a tedious work. Furthermore, an accomplishment of 
constant experimental conditions for intrinsic and extrinsic factors 
is a challenging task. To shroud these limitations, nowadays 
researchers focal point is the utilization of invertebrate models 
which are convenient in terms of time frame, cost, progeny, disease-
associated transgenic lines expression, high-throughput screening 
capability to identify disease-related specific genes and molecular 
pathways [14,16,18]. The availability of potent experimental tools 
in invertebrates, enabled researchers to some extent, to understand 
the basic biology and etiology of neurodegenerative diseases [18] 
(Table 2). Currently, various kinds of invertebrate models are under 
researcher’s utilization for the discovery of the potent and novel 
therapies for PD. In this paper, we review some of the prominent 
invertebrate models on PD research.

Introduction
Parkinson’s Disease (PD) is a geriatric neurodegenerative 

disorder second only to Alzheimer’s disease in prevalence [1,2]. 
PD was first termed by James Parkinson as “shaking palsy”, later 
termed as “Parkinson” by Jean-Martin Charcot [3,4]. Before James 
Parkinson, Zihe Zhang (1151-1231) of the Jin-Yuan Dynasty 
describes some similar disease manifestations as that of PD [5]. In 
1997 scientist discovered that SNCA is the prime protein in LB [6]. 
Recently cell-to-cell transmission of SNCA has been identified [7]. 
Clinical-pathological hallmarks of PD are dopaminergic neuronal 
loss in SNpc of the midbrain and intracellular SNCA accumulation. 
PD is characterized by both motor as well as non-motor impairment. 
Motor impairment manifestations are resting tremor, rigidity, 
postural imbalance, slowness of movement and freezing of gait [8,9]. 
While non-motor impairment manifestations include dementia, 
sleep disturbances, anxiety, apathy, constipation, and depression 
[10,11]. PD prevalence is associated with age as demonstrated by 
meta-analysis, like 1% at 65 and 5% at 85, as well as gender, like the 
male has a high ratio of disease prevalence as compared to female 
[9,12,13]. A major breakthrough in PD research occurred in 1997 
with the discovery of SNCA genes mutation which is the main cause 
of the familial form of PD [14,15]. Along with these discoveries, the 
epidemiological studies strengthen the fact that both genetic and 
environmental factors increase the risks of PD prevalence [16,17]. 
To date, there is no known drug, which can completely eradicate 
the root cause of the PD. All the currently available medications 
and therapies provide symptomatic relief (Table 1). In order to 
eradicate the root causes of the disease, scientists are conducting 
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The Invertebrate Animal Models on PD 
Research
Planaria

Dugesia japonica freshwater planarians belong to phylum 
Platyhelminthes, which secured a Central Nervous System (CNS), 
composed of brain and pair of ventral nerve cords. Planaria are 
simplest animals similar to vertebrates and most invertebrates with 
distinguishing features of bilateral symmetry, dorsal and ventral 
surfaces what is more have a rostro caudal axis with a head and a tail. The 

head possesses optical, chemical and vibratory sensors. Functionally 
and anatomically, Planaria brain is well organized as they contain 
neural populations of different neurotransmitters like Dopamine 
(DA), serotonin, Gamma-Aminobutyric Acid (GABA), Octopamine, 
acetylcholine, and neuropeptides. Their CNS have cholinergic and 
dopaminergic neurons analogous to human [19-21]. One of the 
distinctive characteristics of Planaria is that they can regenerate the 
lost tissues including that of the nervous system via their pluripotent 
stem cells called ‘neoblast ’and this regeneration is facilitated by 
a specific gene named nou-darake. Planaria has well established 

Signs/symptoms Primary treatment Surgical treatment References 

Parkinsonism Levodopa, Dopamine Agonists GPI DBS, STN [145]

Dyskinesia Amantadine GPI DBS, STN [146,147]

Motor Fluctuations MAOI, COMTI, Levodopa ER STN, GPI DBS [148]

Dystonia Botulinum Toxin STN, GPI DBS [149,150]

Rest or Re-Emergent Tremor Levodopa, Botulinum Toxin, Anticholinergics GPI DBS, STN [151]

Behavioral Problems, Psychosis, Hallucinations Quetiapine, Clozapine, Pimavanserin [152]

Depression, Anxiety SSRI, SNRI, Tricyclics, Benzodiazepines, Pramipexole [153]

Dementia Rivastigmine, Donepezil, Galantamine, Memantine [154]

Apathy Methylphenidate, Levodopa, Selegiline [151]

Orthostatic Hypotension Midodrine, Fludocortisone, Droxidopa [154]

Bladder Dysfunction Anticholinergics, Pelvic Floor Exercise [155]

RDB Clonazepam, Melatonin, Quetiapine Sophie E Legge

EDS Modafinil [151]

Insomnia Trazadone, TCAs, Zolpidem, Melatonin, Eszoplicona [156]

Pain NSAIDs, BoNT, Opiates, Antidepressant [153]

Table 1: Parkinson’s disease manifestations possible treatment.

COMTI: Catechol-O-Methyl Transferase Inhibitor; ER: Extended Release; GPI: Globus Pallidus Interna; MAOI: Monoamine Oxidase Inhibitor; SNRI: Serotonin 
Norepinephrine Reuptake Inhibitor; SSRI: Selective Serotonin Reuptake Inhibitor; STN: Sub Thalamic Nucleus; DA: Dopamine Agonist; DBS: Deep Brain Stimulation; 
TCAs: Tricyclic Antidepressant; RBD: REM Sleep Behavior Disorder; EDS: Excessive Daytime Sleepiness; BoNT: Botulinum Toxin; NSAIDs: Non-Steroidal Anti-
Inflammatory Drug.

Human genes C. elegans References

Huntingtin (Htt) n/a [157,158]

Amyloid Precursor Protein (APP) apl-1 [159]

β-secretase (BACE1) n/a [160]

Presenilin-1 and 2 (PS1 and PS2) sel-12, hop-1, spe-4 [161]

Microtubule-Associated Protein Tau (MAPT) ptl-1 [162]

PARK1 n/a [163]

PARK2 pdr-1 Artal-Sanz and Tavernarakis

PARK5 ubh-1 Wolinsky

PARK6 pink-1 [164]

PARK7 djr-1.1 & djr-1.2 [157]

PARK8 lrk-1 [113]

PARK9 catp-6 [160]

PARK11 n/a [113]

PARK13 n/a Artal-Sanz and Tavernarakis

SMN1/SMN2 smn-1 [76]

SOD1 sod-1 Van Raamsdonk and Hekimi

Table 2: Caenorhabditis elegans genes are orthologous of human genes related to neurodegenerative disorders.

n/a: Not Applicable.
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dopaminergic system and having a neuronal marker gene named 
D. japonica Tyrosine Hydroxylase (DjTH) [22-24]. The locomotary 
defect is one of the signs of PD and it is concerned with the loss of 
dopaminergic neurons [25]. Planaria responds with characteristic 
screw-like hyperkinesia and C-like position behavioral changes upon 
exposure to drugs acting on acetylcholine or dopamine systems. This 
distinguishing feature of Planaria can be used for the screening of 
therapeutic potential of both natural and synthetic compounds on 
PD. The opioid system has a role in locomotary activities, and certain 
research studies have proven that stimulation of k-opioid receptors 
in Planaria indirectly enhances dopamine transmission. Planaria has 
a well-developed dopaminergic neuronal system and they respond to 
neuronal reuptake inhibitors, dopaminergic agonists and antagonists 
with characteristics changes in locomotion and behavior [26-28]. 
Planaria has been traditionally used in toxicological research [29]. 
Neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), paraquat, rotenone, and 6-hydroxydopamine (6-OHDA) 
are the main sources of Reactive Oxygen Species (ROS) production 
in an abundant amount that causes dopaminergic neuronal loss and 
produces Parkinsonian phenotypes [30]. Planaria provides a novel 
parkinsonian model for the investigation of drugs acting as protective 
agents against neurotoxin mediating dopaminergic neuronal loss 
in neurodegenerative diseases, especially in PD [31,32]. Metals 
especially trace metals dyshomeostasis plays a significant role in the 
PD pathogenesis [33,34]. Utilization of Planaria as a model can help 
us in a sophisticated way to investigate metals dyshomeostasis in the 
form of producing 3-dimensional screw-like movements and this 
phenomenon is comparable to that of stereotyped behavior produced 
in mammalian [35,36].

Tyrosine Hydroxylase (TH) the first and rate-limiting step-
catalyzing enzyme in the biosynthesis of catecholamine and its 
deficiency is a hallmark of PD. The deficiency of the TH results in 
behavioral changes such as movement speed and direction. Planaria 
characteristic anti-tropism (light avoidance behavior upon exposure 
to light) phenomena associated with neurotransmitter system could 
be used as a novel behavioral test to screen out neuroprotective 
therapeutic compounds [23]. The Djsnap-25 and DjGAD genes in 
Planaria are responsible for this anti-tropism behavior [22]. Planaria 
due to simplicity in the organization, rapid progeny, low cost, high 
throughput and response to a variety of drugs acting not only on 
the dopaminergic and cholinergic nervous systems but also on other 
pathways related to other neurotransmitters serves as a convenient 
model for PD research. Planaria models are successfully used for 
the investigation of different drugs effect like that of DMSO toxicity 
[29], behavioral sensitization of cocaine [37], agents acting on 
monoaminergic systems like Reserpine, haloperidol, apomorphine 
hydrochloride [38], 3-Iodo-L-tyrosine and dopaminergic agonists 
talipexole [31]. These Planaria models veil the behavioral difficulties 
related to other animals models [39]. Due to the distinguishing 
characteristic of regeneration, this model can be used to investigate 
the neuro-regenerative medicine to treat neuro-degenerative diseases 
such as PD [22].

Tribolium castaneum (red flour beetle)
The Tribolium castaneum (T. castaneum) with the entirely 

sequenced genome is an emerging candidate for the investigation 
of various diseases pathogenic studies. The focal point of the 

biomedical researchers is on the untangling mechanistic of the 
basic life processes such as feeding, neurotransmission, the activity 
of immune system as well as mechanistic clarification of different 
diseases such neurodegenerative, cardiovascular and metabolic 
diseases. Due to convenience in terms of ethical concerns, progeny, 
cost, time frame, fully sequenced genomic system and ease of oral 
administration of test compounds enables the T. castaneum to be 
utilized as an investigative tool in the field of life science research 
[40,41]. Depletion in the corpus striatum Dopamine levels of PD 
patients leads to certain behavioral changes [42]. T. castaneum 
shows a characteristic behavioral phenomenon known as tonic 
immobility, and its occurrence is concerned with the brain dopamine 
levels depletion. T. castaneum can be used as an investigative tool 
for screening therapeutic potentials of the new drug candidates in 
neurodegenerative diseases by observation of tonic immobility after 
compound ingestion [40,43]. Ageing is a progressive deterioration in 
the functional and structural well-being of the body. Ageing causes 
the disturbance of normal metabolic and social fitness. Ageing is a 
major risk factor for the most prevalent neurodegenerative diseases, 
including Huntington’s Disease (HD), PD and AD. Ageing disturbs 
the homeostasis between ROS production and antioxidant due 
to which oxidative stress is produced and it causes the damage of 
various biomolecules. For slowing down age-associated cellular 
damage and their consequences, scientists have discovered various 
pharmacological interventions such as insulin signaling pathway, 
epigenetic pathway, mTOR pathway and dietary restriction. 
Currently, researchers are focusing on the use of plant-based drugs 
due to their high antioxidant capacity for the treatment of various 
acute and chronic diseases including neurodegenerative diseases [44]. 
To screen various plant-based drugs efficiency and their ameliorating 
effect on disease pathogenesis an accessible model is required and in 
this case, T. Castaneum is most suitable due to its characteristic of food 
consumption through the mouth. T. Castaneum has been successfully 
used as a screening platform for gene-food interactions. T. Castaneum 
genome having longevity and stress tolerance sirtuin genes (sirt-1 
and sirt-3 based on their closest relatives in other species). Due to 
these distinguishing characteristics, RNA interference (RNAi) can 
be used to investigate the relevance of different genes and signaling 
pathways in stress resistance and ageing. Thus, this T. castaneum is 
most promising in screening the most vital active compound of the 
plants and whose effect can be investigated in most complex models 
in future [45]. Phosphatase and Tensin homolog (PTEN-) induced 
kinase 1 (PINK1) gene is acting as a sensor for mitochondrial damage 
and clear the damaged organelles by Parkin activation and is required 
for mitochondrial quality control. PINK1 phosphorylates Ser65 in 
both ubiquitin and the Ubiquitin-like (Ubl) domain of Parkin, which 
stimulates its E3 ligase activity. Auto phosphorylation of PINK1 is 
required for Parkin activation. Mutations in PINK1 cause autosomal 
recessive PD. To investigate the intrinsic catalytic properties of PINK1 
and molecular mechanisms for the recognition and phosphorylation 
of Ub and Ubl required for Parkin activation different models with 
mammalian PINK1 orthologues have been using by researchers, and 
among them, T. Castaneum PINK1 (TcPINK1) is the most active 
orthologue [46]. By utilization of T. Castaneum TcPINK enabled 
researchers to successfully investigate that substrate specificity of 
PINK1, the effect of PD-associated PINK1 missense mutations and 
the crucial importance of the PINK1 kinase activity in PD prevention. 
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By using insects like T. castaneum enabled the researchers for the first 
time to develop assays for quantitative assessment of PINK1 activity 
and its substrate specificity These findings will be helpful in future for 
PINK1 substrates investigation and its role in PD [47,48].

Drosophila melanogaster
Drosophila melanogaster (D. melanogaster) “fruit fly” is one 

of the most extensively used models in the scientific research 
of neurodegenerative diseases. Due to ease of culture, low cost, 
rapid progeny, well-developed anatomy, genomic sequencing, 
characteristics of gene inactivation by RNA interference, well 
organized dopaminergic system, the relatively short life cycle 
(approximately 10 days) and lifespan of flies (2 to 3 months) accelerate 
the study of age-related disorders including PD. The neurons are 
divided mainly into two groups, the major protocerebral anterior 
medial group (100 neurons) and minor Protocerebral Anterior 
Lateral (PAL). 

PAL consists of protocerebral posterior medial, the protocerebral 
posterior lateral, the Thoracic 1, and the ventral unpaired median 
group each of these contains a group of 5-10 neurons. These different 
groups involved in the control of locomotion and other complex 

behaviors including olfaction, memory, learning, courtship, reward 
and sleep. D. melanogaster are amenable for large-scale genetic 
and chemical screening, thus providing opportunities for not only 
understanding the genetic and molecular basis of diseases but also for 
novel drug discovery. 

D. melanogaster has approximately 300,000 neurons having 
organizational and functional specificity and similarity with 
mammals, lack of blood-brain barrier, which help in the assessment 
of therapeutic compound without the additional concerns of brain 
uptake [49-51]. To study the cellular and molecular basis of disease 
forward genetic approach has provided tremendous results. One of 
the distinguishing features of D. melanogaster is that of having specific 
eye retina tissues for direct expressional studies. D. melanogaster 
retina is composed of approximately 800 identical eye units termed as 
“ommatidia” and it can express the degenerative changes in cellular 
patterns and act as an investigative tool in genetic research [50,52,53].

Epidemiological studies have proven the contribution of genetic 
mutations in Familial PD (FPD). To date, six FPD genes have been 
molecularly cloned, including SNCA, Parkin, Ubiquitin C-terminal 
hydrolase-1 (Uchl-1), DJ-1, phosphatase and Tensin homologues 

Name of Invertebrates 
Models Role in PD Untangling Mechanistic and Novel Drug Discovery References

Utilization of available experimental tools in these models enabled researchers to understand the basic biology of 
PD and screening of different potent compounds

Planaria

DA Agonist [35]

Drug of Abuse [37]

TH Inhibitors [165]

Regenerative Drugs [22]

CNS Acting Drugs [166]

Neurotoxic Drug [31]

Tribolium Castaneum
Screening of Potential Therapeutic Compounds [42,43]

Genetic Mutations [47,48]

Drosophila melanogaster

Genetic Mutations [56]

Screening of potential therapeutic compounds [167]

Genotypic-phenotypic relationships [46]

Non-motor dysfunction [51]

Genetic-environmental interactions [168]

Different Biochemical Pathways and their Impact on PD [50,169]

Neurotoxic Substances [60]

Behavioral Dysfunction [53]

Caenorhabditis elegans

Genetic Mutations [10,17,110]

Screening Potent Therapeutic Compounds [130,131]

Screening of Cholesterol Metabolism impact through Nceh-1 gene [170]

Autophagy Dysfunction through LGG-1 gene [171]

Molecular Chaperon i-e Hsp-70 role in PD [172]

Neurotoxic Substances and their Impact on Disease Pathogenesis [173]

DA Receptors Effect on Behavior [101]

The Detrimental Effect of Metals [116]

Impact of Different Molecular Pathways [137]

Table 3: The role of C. elegans, Planaria, T. Castaneum, D. melanogaster in understanding the mechanism of PD pathogenesis and novel drug discovery.

DA: Dopamine; TH: Thyroxine Hydroxylase.
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(PTEN)-inducedkinase1 (PINK1), and leucine-rich repeat kinase 
2 (LRRK2). D. melanogaster has 50% genetic homology in entire 
genetic pathways with human and 60-70% of human disease genes 
possess drosophila counterparts. Due to these characteristics, D. 
melanogaster provides a sophisticated model to investigate the effect 
of the mutation on the behavioral phenomenon, dopamine level 
changes and basic molecular mechanism of the disease pathogenesis. 
A Mutations at three loci of the SNCA, Uchl-1 and Parkin members 
cause defective degeneration of the misfolded protein in disease 
mechanisms [54]. Though the D. melanogaster genome does not 
encode an SNCA homolog, pan-neuronal expression of either wild 
type or mutant SNCA (A53T and A30P) provide a basic insight into 
several features of PD. The chaperone family Hsp70 and Hsp40 plays a 
vital role under stress conditions in the proper folding of the proteins. 
Simultaneous overexpression of human Hsp70 with α-synuclein 
in D. melanogaster leads to remarkably efficient suppression of 
dopaminergic neuronal death and this effect is investigated by feeding 
D. melanogaster with geldanamycin, which increases the endogenous 
level of Hsp70. Thus the large scale genetic screening capability of the 
D. melanogaster model is providing promising therapeutic strategies 
for human neurodegenerative disorders [49,52,55]. Advanced 
pharmacological research indicates that the active compounds of 
plants provide protective effects against neurotoxicity in models of 
PD. Researchers are utilizing Pharmacological models for screening 
therapeutic potential of different chemicals, in this scenario, D. 
melanogaster characteristic of direct feeding can be avail for screening 
therapeutic effect of different chemicals by the direct observation of 
its different behavioral changes [51,56-59]. Epidemiological studies 
have suggested that environmental toxins including pesticides, 
herbicides, fungicides exposure are one of the risk factors of PD. 
A meta-analysis study reported a 62% increase in PD risk due 
to exposure to pesticides. Similarly, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and its analogue paraquat, one of the 
most widely used herbicides exposure causes rapid, non-progressive 
DA neuron loss and associated motor disabilities in humans. D. 
melanogaster can be utilized to investigate the direct effect of these 
toxins by observation of declination in the climbing ability which is 
directly associated with a decrease in DA signaling due to increased 
dopaminergic neurodegeneration in the brain. Later these results 
can be translated in higher animal’s models for the investigation of 
further molecular mechanisms of the disease pathogenesis [51,60,61]. 
Over 90% of patients developed abnormality in sleep rhythm during 
PD due to DA levels alteration in the brain. D. melanogaster can be 
employed to study circadian changes. The D. melanogaster circadian 
cycle control several behavioral and physiological processes especially 
locomotary activity. Several studies suggesting that the increase in 
circadian cycle abnormality is mainly due to SNCA aggregation. By 
availing, the opportunities of ease in advanced genetics techniques 
implementation and downregulation or overexpression of specific 
genes in D. melanogaster, circadian cycle abnormality can easily be 
examined. Later these results can easily be intervened that whether 
or not circadian rhythm abnormality is involved in the enhancement 
of neurodegeneration and presenting an additional risk factor for PD 
pathogenesis [53,62,63]. The B type Cell Lymphoma 2 (BCL-2) family 
of genes composed of pro-apoptotic and anti-apoptotic members play 
a pivotal role against apoptosis in animals. Drosophila due to having 
distinguished characteristics of age-associated loss of dopaminergic 

neuron, reduction in locomotor function, besides, of having BCL-
2 family members’ homologues that are anti-apoptotic Buffy and 
pro-apoptotic Debcl presented a widely successful and applied 
model to investigate the role of BCL2 family member’s proteins 
in disease progression. Similarly, Drosophila due to possession of 
Transmembrane Bax Inhibitor-1 Motif-containing (TMBIM) family 
homologues and the ability to display some features of PD like loss 
of dopaminergic neuron and locomotary function with age helps in 
sort out the role of Bax Inhibitor-1 (BI-1) in neuroprotection against 
apoptosis [64-66]. The pathogenic role of mitochondrial dysfunction 
and altered expression of high-temperature requirement A2 (HtrA2; 
also known as Omi) in neurodegeneration has been highlighted 
through the use of D. melanogaster model of PD and helped in 
the investigation of the role of various PD-linked genes in disease 
pathology [67]. Oxidative stress one of the important factors in PD 
progression is linked with the presence of LB in the diseased patient 
brain. Natural products due to having the potential of scavenging 
free radicals and influence on the pathogenesis of neurodegenerative 
diseases are recently one of the main focus of researchers for 
searching therapies for debilitating diseases. The transgenic D. 
melanogaster models due to the expression of wild or mutant types 
of human alpha-synuclein under GAL4/UAS system are providing 
the best opportunities to screen plant-based products potentials as 
antioxidant therapies for neurodegenerative diseases [68-70]. In 
short, D. melanogaster has contributed substantially in in sighting PD 
mechanism due to having ease of study behavioral defects, histology, 
physiology and different PD-concerned genetic interactions. 

Caenorhabditis elegans
Caenorhabditis elegans (C. elegans) was first used in the 1970’s as 

a model animal for investigation of neurodegenerative diseases [71]. 
C. elegans due to highly conserved genomic sequencing with 
approximately 83% human genes orthologous and at least 42% of 
human disease-related genes orthologous and metabolic pathways 
with the mammalian system is presenting itself as a powerful genetic 
tool. Besides, C. elegans have orthologous of genes related with 
polyglutamine repeat diseases [72], AD [73], PD [74], Amyotrophic 
lateral sclerosis [75], Spinal Muscular Atrophy [76] (Table 2). Due to 
advantages of small size, ease of laboratory maintenance, short life 
span, low-cost, fast reproduction, ease of reporter gene fusions, ease 
of genome manipulation, ease of handling, high throughput screening 
and transparent body makes this model one of the best models [77-
79]. The prime advantages of C. elegans is its well-developed nervous 
system, which is structurally and functionally similar to mammals. 
The nervous system composed of 302 neurons having eight 
dopaminergic neurons, subdivided into three main groups cephalic, 
anterior deirid and posterior deirid neurons with 5 dopamine 
receptors among which two are homologous to mammalian D1-type 
receptors (dop-1, dop-4) and three are homologues to D2-type (dop-
2, dop-3 and dop-6) with a dopamine transporter the dat-1 [4,80,81]. 
Another striking feature of the C. elegans is the reverse genetics that is 
knockdown target genes by simply injecting, soaking, or feeding 
worms dsRNA, which is complementary to the targeted and 
subsequently silenced gene [82]. By the introduction of this method, 
Andrew Fire and Craig Mello later received the 2006 Nobel Prize in 
Physiology [83]. Epigenetics plays a vital role in PD pathogenesis; 
epigenetic marks are known to be inherited from generation to 
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generation. The C. elegans due to the short life span providing an 
opportunity as an ideal model to determine the effect of a specific 
environmental factor or drug exposure that lasts for multiple 
generations after exposure has ceased, and thus led the way in the 
discovery of novel genes that influence chromatin landscapes in the 
ways that influence PD phenotypes [84]. SNCA was first discovered 
in 1985 [85,86]. Polymeropoulos and colleagues in 1997 discovered 
that a single point mutation in SNCA Ala53Thr leads to an inherited 
form of PD and a family having this genotype have 85% chances to get 
the disease [87,88]. Currently the main challenge is the discovery of 
the most potent drug, which can cure the root cause of the disease. A 
number of plant-based drugs have been found with neuroprotection 
action. For the proper screening of these candidate compounds 
therapeutic values a model, system with convenient in vivo assays is 
always required. As mammalian disease models are expensive and 
time-consuming, therefore a rapid and inexpensive model system is 
the main priority of researchers. Here the C. elegans can be utilized 
for screening therapeutic values of different compounds [89]. C. 
elegans do not have the SNCA homolog; therefore, it presents the 
opportunity to investigate the interaction of SNCA with other genetic 
defects and its pathological role in PD [10]. Transgenic C. elegans 
with overexpression of human SNCA in various cell types i-e in pan-
neuronal, dopaminergic neurons and body muscle walls provide the 
opportunity of cellular pathology of various synucleopathies to some 
extent [90-92]. Transgenic C. elegans can be used to investigate the 
therapeutic potentials as well as to get insight into the mechanisms of 
various phytochemicals [93-95]. Dopamine plays a crucial role in 
several physiological processes like endocrine function, memory, 
emotion and cognition and their dysfunction and degeneration have 
shown severe neurobehavioral disorders [30,96]. Despite decades of 
investigations, the mystery of dopamine role in neurological diseases 
is still unclear. To investigate the role of dopamine in neurodegenerative 
diseases and its molecular pathways is one of the main focuses of 
research. The complexity of the human brain which contains over 100 
billion neurons and tens of thousands of DA-containing cells, relative 
inaccessibility of vertebrate’s dopaminergic neurons, besides, the 
inability of in vivo direct visualization of dopaminergic neurons 
restricts the progress in the clarification of molecular pathways 
involved in the dopaminergic neurodegeneration. In this regards the 
C. elegans having distinguishing characteristics of body transparency 
enable in vivo visualization of cell morphology and protein expression 
patterns. This feature can be used to get insight into PD pathology. C. 
elegans have well developed dopaminergic system and it was first 
identified in 1974 by J. Sulston and colleagues [78,97,98]. PD is a 
movement disorder [99]. C. elegans have specific behavioral and 
locomotary action related to the dopamine [100]. This behavioral 
plasticity of the C. elegans can be used to investigate the therapeutic 
potential of natural compounds in ameliorating the toxicity of 
dopamine in neurodegenerative diseases [101,102]. Genetic factors 
contribute to the pathogenesis of PD up to 10%. The eminent genes 
contributing to PD risk factors are α-synuclein, leucine-rich repeat 
kinase 2 (LRRK2), glucocerebrosidase, DJ-1, PINK-1, and Parkin 
[103,104]. Parkin gene mutations contributed up to 50% for 
autosomal recessive, early-onset, familial form of PD [105]. LRRK2 
encoding gene point mutation account for about 3% of the overall 
causes of autosomal dominant PD [106]. DJ-1 plays an important role 
in the protection of neurons from oxidative stress and its mutation is 

concerned with the Autosomal Recessive Early-Onset Parkinsonism 
[17,107]. To study the pathogenic role of genetic mutations in 
Parkinsonism C. elegans due to having homology with mammalian 
genes provide the best model. C. elegans have the orthologs of LRRK1 
and 2 in the form of lrk-1 and its deletion or knockout can give an 
important insight into different behavioral phenotypes related to PD 
[71,108]. C. elegans has a homologue of the PTEN-induced kinase 
pink-1 gene and LRRK2 and by the utility of this characteristic, 
scientist for the first time came to know that these PINK-1 and LRK-1 
genes having an antagonistic role [109,110]. Mesencephalic Astrocyte-
Derived Neurotrophic Factor (MANF) and Cerebral Dopamine 
Neurotrophic Factor (CDNF) are the members of a novel family of 
Neurotrophic factors (NTFS) of invertebrates, and they play a key 
role in dopaminergic neurons protection. To investigate the molecular 
mechanism of MANF gene C. elegans due to having MANF gene 
homolog manf-1, provide the opportunity as a model. By availing this 
opportunity in C. elegans scientists proved that manf-1 mutant has an 
effect on the age-dependent declination in dopaminergic neurons 
survival. In addition, they show failure in the regulation of ER 
unfolded protein response (ER-UPR) [111-113]. MANF 
neuroprotective and neurorestorative function has been confirmed 
by researchers by using specific neurotoxin model of C. elegans [114]. 
Epidemiological studies suggest that increased prevalence of PD in 
rural areas is associated with the use of pesticides, herbicides, and 
heavy metals [115]. The postmortem studies of the neurodegenerative 
disease deceased brain tissues revealed the most compelling evidence 
of the metal accumulation relationship with neurodegenerative 
diseases [116]. Excessive brain iron accumulation causes a 
Neurodegeneration with brain iron accumulation syndrome 
previously known as (Hallervorden-Spatz syndrome) consists of a 
group of rare autosomal recessively transmitted neurodegenerative 
disorders with progressive symptoms of an extrapyramidal 
dysfunction including dystonia, rigidity, and choreoathetosis. Several 
postmortem studies revealed that the iron accumulation in 
Parkinsonian SNpc region is increased up to 35% [117]. An elevated 
level of iron interacts with SNCA [118]. Mitochondrial dysfunction is 
also related to elevated iron level [119]. Excessive manganese exposure 
causes a toxic condition known as “manganism” identified by James 
Couper in 1837, causes the irreversible damage of the same region of 
basal ganglia implicated in PD [120,121]. C. elegans offering a 
powerful in vivo model system for studying neurodegenerative 
disease and gene-environment interactions. C. elegans behaviors 
related to DAergic signaling including basal slowing response, area-
restricted searching, and tap withdrawal response can be used to 
study different metal neurotoxicity. By using this model researcher 
have got insight to some extent into the role of metal transporters and 
metal homeostasis in the etiology of neurodegenerative disease. This 
model can be further used in future to screen different metals and 
xenobiotic suspected of inducing neurodegeneration [116,120,122]. 
Manganese causes an extrapyramidal syndrome that resembles PD. 
The symptoms include rigidity, tremor, gait disturbances and 
hypokinesia. Mutations in the SLC30A10 gene have been reported to 
induce a genetic manganese overload syndrome and causes moment 
disorder [123,124]. C. elegans is a powerful model due to its well-
developed nervous and genetic system. DJ-1 gene act as a 
cytoprotective antioxidant protein in verity of the toxic condition and 
proved from several studies that this gene protects the C. elegans from 



Austin J Psychiatry Behav Sci 7(2): id1082 (2021)  - Page - 07

Wang X and Li H Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

manganese induced DAergic toxicity in an age-dependent manner 
[125]. Divalent Metal Transporter 1 (DMT1) is the primary 
manganese importer, besides; it also transports a variety of divalent 
metals including iron. To investigate the role of this transporter in PD 
pathology C. elegans provide the best opportunity due to having 
DMT1 orthologues SMF-1, SMF-2 and SMF-3. And utilization of this 
model has successfully proved that due to manganese (Mn) sharing 
transporters with iron (Fe) and as a consequence of transportation 
competition Fe level become reduced with the elevation of Mn level 
[126,127]. To date, existing PD therapies provide symptomatic [128]. 
Plant-derived components or phytomedicines such as alkaloids and 
flavonoids have been used from the ancient times against 
Neurodegenerative Disease (NDDS). Phytochemicals from medicinal 
plants can provide a better and safer alternative to synthetic molecules 
[129]. C. elegans can be utilize to screen out the neuroprotective effect 
of different phytochemical [89,99]. Several antioxidant and anti-
ageing phytochemicals compounds have been successfully screened 
by using this model [44,130,131]. Oxidative stress and mitochondrial 
dysfunction are one of the main causes of PD etiology. By the 
utilization of the C. elegans, numerous plant-based compounds 
antioxidant and mitochondrial function ameliorative effect have been 
screened out [132-134]. The mammalian Nrf (NF-E2-related factor) 
(Nrf1, Nrf2, Nrf3, p45 NF-E2) protein is antioxidant and xenobiotic 
defense regulator; in addition, they perform a role in cellular 
protection and maintenance. For the exploration of mechanisms that 
how the Nrf/CNC proteins play a role in antioxidant regulation C. 
elegans provide the opportunity because of having Nrf/CNC proteins 
sequence and functional orthologs SKN-1 [135,136]. By using a C. 
elegans model researchers have proved that how NRF-2 pathways are 
regulated beside the dopaminergic neurons protection against metals 
and other neurotoxins toxification [137,138]. Striking evidence 
revealed that in PD biogenic amine system destruction occurs. A 
versatile model system of C. elegans has been used to study the 
molecular mechanism of biogenic amine system destruction 
suggesting that the p38 MAP kinase pathway plays a crucial role in C. 
elegans innate immunity against biogenic amine system destruction 
toxicity and may play the same role in higher organisms [139,140].

Limitations of Invertebrate Models
Despite all the outstanding advantages of invertebrates, there 

are several disadvantages. In vertebrates, the brain regions and 
circuitries studied have obviously relevant and homologous human 
counterparts, where in invertebrates; the homology is not obvious 
[141]. In mammals, all animals belong to same class and body plan 
and brain structures are largely conserved, wherein invertebrates 
belong to different phyla, body plan and range of nervous systems. 
The morphological homology of brain regions between vertebrates 
and invertebrates is not obvious [142]. The neurocircuitry and specific 
anatomy of vertebrates and invertebrates are totally different [143]. 
Mostly have simple body plan, and lack of defined organs/tissues 
including brain, blood, fat cells, internal organs. Their bodies are 
small which make biochemistry very difficult. Generally, microarray, 
immunoprecipitation, and chromatin immunoprecipitation is 
conducted in mixture of whole animal’s extract of either mixed-stage 
or similar growth stage. This create confusion in understanding of 
any specific tissue signaling [144]. It would be very difficult to argue 
that any results on neuro-anatomical level would directly translate 

from invertebrates to vertebrates. 

Conclusions
Pharmacological therapies for PD has so far had some 

achievement in terms of symptomatic relief. On the other hand, 
extensive research is needed to establish a precise and fundamental 
disease-modifying therapeutic approach in PD. For the discovery 
of potential therapies and mechanistic insight into the disease 
pathogenesis, different researchers have used numerous disease 
models. The human and higher mammalian models have limitations 
due to ethical concerns, cost and lengthy time frame. Invertebrates 
are the suitable alternatives to higher mammalian models in the above 
limitations. Different invertebrate’s models have been in use and 
although not all recapitulated the perfect pathogenesis of PD, each to 
some extent has provided opportunities to insight into certain aspects 
of the disease. The basic logic of using these invertebrate models is 
that they enabled researchers to apply the potent experimental tools 
available in these organisms to understand the basic biology of 
neurodegenerative diseases. The use of the forward genetic screening 
approach of the invertebrates has shown tremendous results in the 
identification of novel genetic factors that modify the risk of PD. 
These models helped in disclosure of new molecular pathways as 
potential therapeutic targets that are directly translatable into higher-
order systems and can be used in future in the development of an 
efficient treatment strategy for this complex disorder. It is anticipated 
that ongoing and future genetic modifier screens in these invertebrate 
models will generate further mechanistic insights into the disease 
processes. The basic knowledge gained through these models can be 
translated into higher animal’s model to get a more precise insight 
into the biochemical and molecular pathways. Based on current 
knowledge gained by the utilization of these invertebrates models in 
terms of the etiology, pathogenesis, and mechanism of PD, numerous 
neuroprotective strategies might be devised. Several research goals 
can be devised from the discovery of multiple PD-related genes 
and phytochemicals potential therapeutics. Scientists must search 
for the creation of etiologic specific PD animal models for the 
identification of links between the molecular pathways modified by 
diseased -associated genes. The investigation of these aspects will 
enable scientists shortly that what makes the dopaminergic neurons 
susceptible to degeneration in PD as well to test and devise the novel 
therapies for this devastating disease.
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