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Abstract

Background: Epidemiological evidence on the association be-
tween air pollution and the risks of infectious diseases remained 
largely lacking. We aimed to examine associations of exposures to 
fine Particulate Matter (PM2.5) and ozone (O3) with risks of national 
notifiable infectious diseases in a mega city, shanghai in China.

Methods: We constructed a double-pollutant model for each air 
pollutant, applying a time-series analysis incorporating both single 
and Distributed Lag Model (DLM) separately to model the expo-
sure-lag-response relationship with a total of 43 national Notifiable 
Infectious Diseases (NNIDs) during 2013 to 2019. The model was 
adjusted for seasonality and log-term trend, mean temperature, 
relative humidity, and other air pollutant. Analysis was further con-
ducted for NNIDs categories and specific diseases. 

Results: The study included 661,267 NNIDs cases. Exposures 
to PM2.5 and O3 were associated with increased risks of NNIDs but 
were not associated with the same categories. Each 10 µg/m3 in-
crease in O3 was associated with an increased risk of total NNIDs 
(Relative Risk [RR] lag 1 month: 1.29, 95% Confidence Interval [CI]: 
1.02 to 1.65), vaccine preventable disease (RR lag 1: 1.75, 95% CI: 
1.02 to 3.01) and sexually transmitted and bloodborne diseases (RR 
at lag 2: 1.12, 95% CI: 1.00 to 1.26), while the association for PM2.5 
remained inconclusive. 

Conclusion: These findings suggested substantial infectious dis-
ease burden was associated with exposures to ambient air pollut-
ants, emphasizing the urgent need a complete picture of associa-
tion between air pollution and notifiable infectious diseases and 
comprehensive evaluation of the relevant disparity among spec-
trum of disease.

Keywords: Infectious diseases; Air pollution; Ozone; Fine par-
ticulate matter; Time-series study; Distributed lag modelIntroduction

China has undergone a rapid epidemiological transition with 
remarkable progress in the control of infectious diseases. Yet, 
possibly due to significant reductions in disease burden, infec-
tious diseases are often overlooked as causes of morbidity and 
mortality in China, and the assessment of climate and air pollu-
tion effects and its effect disparity related to infectious diseases 
[6,18]. In the past few years, the outbreak of a variety of emerg-
ing infectious diseases, such as COVID-19 and monkeypox, has 
raised a new challenge for human health and emerging attention 
on the climate impact on infectious diseases [3,11,21,22,28].

Ambient air pollutants, such as fine Particulate Matter 
(PM2.5) and Ozone (O3), could potentially elevate the presence 
of bacteria, viruses, or other pathogens within the atmosphere. 
They may also function as an immunosuppressive agent, there-
by compromising the typical immune defenses of the human 
body [23]. However, current epidemiological evidence of the 
relationship between air pollutants and infectious diseases re-
mains limited and inconclusive, posing a great challenging to 
draw a reliable conclusion from existing research. Moreover, 
comprehensive reports of comparison and disparity in the as-
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sociation between air pollution and spectrum of infectious dis-
eases were not identified in China and other countries [7,23]. 
In this context, the successive infectious disease surveillance 
system is an opportunity to provide a complete picture of asso-
ciation between air pollution and notifiable infectious diseases 
and comprehensive evaluation of the relevant disparity among 
spectrum of disease in the past decade.

To our knowledge, this is the first study to report compre-
hensively the short-term effect of air pollution on a wide range 
of notifiable infectious diseases due to 43 causes and evaluate 
the disparity in association by specific category. The identifica-
tion of the potential disparity in infectious disease burdens due 
to air pollution would provide direction for the precise imple-
mentation of prevention and control measures.

Materials and Methods

Study Design and Infectious Diseases Data

The study is a time-series analysis using secondary data con-
ducted in Shanghai, a megacity in China, during 2013 and 2019. 
Ethnical approval was not applicable to our research since the 
data collected in this study is secondary data without any per-
sonal information.

Monthly National Notifiable Infectious Diseases (NNIDs) 
data was collected from the surveillance system, detailed de-
scription has been published elsewhere [6]. A total of 43 Na-
tional Notifiable Infectious Diseases (NNIDs) were included in 
this study, and were divided into seven categories following 
the previous categorization approach [9]. Specifically, I. Vaccine 
Preventable Diseases (11 diseases): This category encompasses 
seasonal influenza, rubella, pertussis, mumps, measles, hepa-
titis A, B and D, neonatal tetanus, poliomyelitis and diphtheria. 
II. Bacterial Diseases (4 diseases): including tuberculosis, scarlet 
fever, meningococcal meningitis, and leprosy. III. Gastrointesti-
nal and Enterovirus Diseases (5 diseases): This group consists of 
diseases primarily affecting the gastrointestinal system, such as 
typhoid and paratyphoid, infectious diarrhea, Hand, Foot, and 
Mouth Disease (HFMD), dysentery, and acute hemorrhagic con-
junctivitis. IV. Sexually Transmitted and Bloodborne Diseases 
(4 diseases): This category includes syphilis, gonorrhea, HIV/
AIDS, and hepatitis C. V. Vectorborne Diseases (7 diseases): This 
group covers typhus, schistosomiasis, malaria, kala-azar, Japa-
nese encephalitis, dengue, and filariasis. VI. Zoonotic Diseases 
(9 diseases): brucellosis, hepatitis E, hydatid disease, rabies, an-
thrax, leptospirosis, H5N1, H7N9, and Severe Acute Respiratory 
Syndrome (SARS). VII. Quarantinable Diseases (3 diseases): This 
category encompasses hemorrhagic fever, cholera, and plague.

Air Pollutants and Weather Variables

The two air pollutants included in this study are fine particu-
late matter (PM2.5) and ozone (O3). The unit of PM2.5 and O3 pre-
diction is μg/m3, aligning with the China ambient air quality stan-
dards (GB3095-2012). Monthly average PM2.5 concentrations 
at surface level were downloaded from a nationwide PM2.5 
dataset, with a spatial resolution of 10 km [3,26]. The data set is 
part of the Tracking Air Pollution in China (TAP, http://tapdata.
org.cn/) project. The details of the PM2.5 prediction model have 
been documented elsewhere [13,15]. Briefly, TAP is a publicly 
available database with a high temporal and spatial resolution, 
and the enhanced performance through the integration of mul-
tisource-fusion data and machine learning algorithms. Initially, 
a comprehensive dataset comprising ground PM2.5 measure-
ments from monitoring stations, satellite-derived Aerosol Op-

tical Depth (AOD), meteorological parameters, land use char-
acteristics, population figures, and elevation data, along with 
information from the Weather Research and Forecasting/Com-
munity Multiscale Air Quality Modeling System (WRF/CMAQ), 
was harmonized into a unified 10 km grid. Subsequently, the es-
timation of PM2.5 concentration in TAP products was predicted 
through a two-stage machine learning framework employing a 
synthetic minority oversampling technique in conjunction with 
a tree-based gap-filling method. The cross-validation of the pre-
diction model yielded a range of 0.80 to 0.88, indicating compa-
rable performance with existing studies [26].

Maximum 8 h average O3 concentration predictions were 
collected from TAP dataset, predicted using the three-stage 
random forest model [27. The three-stage O3 prediction model 
incorporates a comprehensive set of data sources, including 
ground measurements in the reference state, CMAQ simula-
tions, Ozone Monitoring Instrument (OMI) satellite O3 profiles 
(PROFOZ), MERRA-2 meteorological parameters, MODIS Nor-
malized Difference Vegetation Index (NDVI), and National Cen-
ters for Environmental Information (NCEI) annual night light 
data. In the initial stage, two sets of maximum 8-hour average 
O3 concentration predictions were generated, one incorporat-
ing satellite data and the other without, aimed at addressing 
gaps arising from missing satellite retrievals in the subsequent 
model. The O3 prediction model that excluded satellite data 
provided full spatial coverage. In the second stage, we em-
ployed an elastic-net regression model to merge random for-
est predictions from both datasets, ensuring comprehensive O3 
predictions. To enhance prediction accuracy, a third-stage mod-
el was developed to predict the spatiotemporal distribution of 
the difference between maximum 8-hour average O3 measure-
ments and random forest predictions, utilizing kriging interpola-
tions. These predicted residuals were then integrated into the 
second-stage predictions, yielding the final predictions. The 
5-fold cross-validation predictions of the O3 prediction model 
demonstrated an R2 value of 0.70 when compared to ground 
measurements.

Monthly meteorological data during 2013 and 2019, includ-
ing average temperature (°C), relative humidity (%), was ob-
tained from the National Meteorological Data Sharing Center 
(http://data.cma.cn/).

Statistical Analysis

Time Series Regression (TSR) with generalized linear model 
was applied to explore the short-term effect of individual weath-
er variable on NNIDs categories [16]. To allow for the overdis-
persion of the NNIDs counts, a Quasi-Poisson model is selected. 
TSR is widely used for mathematical modelling in environmental 
epidemiology, as it measures short-term effect (which is the as-
sociation between monthly variation in exposure and outcome 
in this study), socioeconomic and demographic levels therefore 
are assumed to be constant over neighboring months. To con-
trol for the long-time trend and seasonality of NNIDs, alterna-
tive choices of time adjustment have been performed and com-
pared, including linear trend, time interactions, Fourier terms, 
and different splines with varied degrees of freedom (df). A 
Natural Cubic B-Spline (NCS) of time with 8 df per year was se-
lected as the best-fit approach in our analysis (Supplementary 
Figure 1). For modelling the relationship between air pollut-
ants and NNIDs, two modeling approaches including a single 
lag model and a Distributed Lag Model (DLM) were employed 
separately, as the health effect of pollutant variability is usually 
linear and delayed [1,4]. In particular, the DLM accounts for the 

http://data.cma.cn/
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impacts of other lag periods and provides cumulative exposure-
lag-response associations over multiple lag units. Specifically, a 
cross-basis function for both exposure and lag dimensions as-
suming linear relations were introduced into the model [5. For 
non-infectious disease, a maximum lag of 21 day is commonly 
used (which approximates to lag1 in this study) [12]. However, 
given the more complicated casual pathway for infectious dis-
ease, wide range of lag months of 2 has been considered, also 
based on recommendation from previous literatures on infec-
tious immune period, i.e., maximum lag up to 6 months [16,17]. 
We did the analysis for NNIDs by different categories as well as 
by specific causes. However, only subgroups with a sample size 
exceeding 5000 were considered eligible for analysis, ensuring 
adequate statistical power [2].

Double-pollutant models are applied for each pollutant, 
adjusting for another pollutant as well as other time-varying 
weather variables (mean temperature, relative humidity) [5]. 
The adjustment for each confounding variable is implemented 
via a NCS with 3 df of moving average of the covariate over the 
lag period. The effect estimate is reported as Relative Risk (RR) 
with its 95% Confidence Interval (CI), representing the morbid-
ity risk changes per 10 μg/m3 in PM2.5 or O3 at each lag month, 
after adjusting for other lagged exposures.

Sensitivity Analysis

Sensitivity analyses were performed to check the robustness 
of the analysis. An extended 3-month lag period to explore a 
wider range of relationship pattern and lag durations. Addition-
ally, single-pollutant models were employed for comparison 
with results adjusted for other pollutants. All the analyses were 
performed in R software (version 4.2.1;  https://www.rproject.
org/) with “dlnm” package. The significance level was set at 
0.05.

Results

Characteristics of NNIDs and Air Pollutants

There were 661,267 incident NNIDs reported in Shanghai 
from January 2013 to December 2019 (Table 1). The incident 
cases predominately consisted of vaccine preventable diseases 
(93,134 cases, 14%), bacteria diseases (73,851, 11%), gastro-
intestinal and enterovirus diseases (351,464, 53%) and sexu-
ally transmitted and bloodborne diseases (137,036 cases, 20%). 
There were also 447 incident cases for vector borne diseases, 
5,300 for zoonotic diseases, and 35 for quarantinable diseases. 
The time-series plots showed seasonal patterns for each NNIDs 
category, along with a decreasing trend over time except for 
vector borne and zoonotic diseases (Supplementary Figure 2).

Over the study period between 2013 and 2019, the monthly 
concentrations of PM2.5 and O3 averaged 46.8 and 124.1 µg/m3 
(Table 2). For monthly ambient weather variables, the average 
level of mean temperature and relative humidity was 17.4 °C 
and 72.8 %, respectively. For the temporal trend, discernible 
seasonal patterns were observed for all weather exposures 
(Supplementary Figure 3). It is noteworthy that the mean PM2.5 
exposure exhibited a substantial declining trend over time. The 
pairwise correlations show moderate collinearities between the 
air pollutant and meteorological variables (Supplementary Fig-
ure 4).

Air Pollutants and NNIDs Categories

Results of the single and distributed lag models are shown 

in Table 3. PM2.5 exposure at the current month (lag 0) was asso-
ciated with total NNIDs risk (RR: 1.09, 95% CI: 1.00 to 1.19) and 
vaccine preventable diseases (RR: 1.22, 95% CI: 1.01 to 1.47), in 
the single lag analysis in which the analysis without adjustment 
for other lag months. In the context of DLMs, while most as-
sociations were not statistically significant across the exposure 
lags and categories, exposures to PM2.5 at all lag months and 
overall cumulative risk were associated with decreased sexually 
transmitted and bloodborne risk (Table 3). 

Susceptibility among subgroups was mostly consistent 
across lags and specific diseases (Figure 1). As an example, each 
10-µg/m3 increase over lag 0-2 PM2.5 was associated with 56% 
(95% CI: -76 to -20) and 59% (95% CI: -79, -22) decrease in new 
diagnoses of Syphilis and Gonorrhea per month, respectively 

Figure 1: Relative risk (and 95% CIs) of air pollutant related 
infectious disease per 10 µg/m3 increase in PM2.5 and O3 for each 
category of NNIDs. The double-pollutant DLM model was adjusted 
for seasonality and long-term trend, other air pollutant, mean 
temperature, and relative humidity.

(Supplementary Table 1). In addition, those who exposed to 
lower exposure at lag 2 month had a higher risk of tuberculosis 
(RR: 0.77, 95% CI: 0.60 to 0.99).

Exposures to O3 at lag 1 and 2 months were statistically 
and significantly associated with increased total NNIDs risk in 
DLMs but not observed for in single lag models. Each 10-µg/
m3 increase in lag 1 and 2 O3 was respectively associated with 
29% (95% CI: 2 to 65) and 18% (95% CI: 1 to 38) risk increase in 
new cases per month. For NNIDs categories, those who experi-
enced higher O3 concentration at lag 1 month is associated with 
a higher risk of vaccine preventable diseases in both single lag 
model (RR: 1.20, 95% CI: 1.06 to 1.36) and DLM (RR: 1.75, 95% 
CI: 1.02 to 3.01) (Table 3). 

In the DLM analysis, a higher sexually transmitted and blood-
borne risk was also associated with a higher level of O3 expo-
sure at lag 2 month (RR: 1.12, 95% CI: 1.00 to 1.26). These as-
sociations were consistent for specific diseases in the further 
subgroup analyses with all the effect sizes larger compared with 
those in the single lag models, particularly for seasonal influ-
enza, mumps, scarlet fever and gonorrhea (Figure 1, Supple-
mentary Table 1).

Sensitivity Analysis

Sensitivity analyses showed that the association estimates 
were generally robust given the altered conditions adjustment 
of covariates (Supplementary Table 2). In addition, the associa-
tion estimates changed only slightly after excluding adjustment 
for other air pollutant in the single-pollutant model. When we 
applied a longer maximum lag of up to 3 months, the DLM re-
sults were mostly inconsistent across lag durations and NNIDs 
categories for PM2.5 exposure, and the associations for O3 at-
tenuated with increasing lag periods (Supplementary Table 3).

https://www.rproject.org/
https://www.rproject.org/


Submit your Manuscript | www.austinpublishinggroup.com Austin J Public Health Epidemiol 11(3): id1169 (2024) - Page - 04

Austin Publishing Group

Discussion

This study represents the most comprehensive study using 
the infectious disease surveillance system to offer a holistic 
assessment of the association between ambient air pollution 
and notifiable infectious diseases. Our evaluation also allows 
for a thorough evaluation of disparities across the spectrum of 
diseases. Our findings reveal a potential association between 
PM2.5 and O3 and total NNIDs, and the associations with suscep-
tible categories and causes may vary for different air pollutants. 
Few studies have explored the relationship between air pollu-
tion and infectious diseases, often focusing on specific diseases, 
which hinders comparisons. Our study reveals no significant im-
pact of PM2.5 and O3 on Tuberculosis (TB), aligning with recent 
meta-analyses [23,25]. However, a prior literature review has 
reported a conflicting finding indicating a positive association 
between PM2.5 and TB [20]. More extensive studies, encom-
passing a broader range of infectious diseases, are warranted 
for comprehensive understanding of the impact of air pollution 
on infectious diseases.

Table 1: Summary statistics of 43 notifiable infectious diseases by category and specific diseases during 2013-2019 in Shanghai.
n Meana SDa n Meana SDa

Vaccine preventable diseases 93,134 1109 1538 Vector borne diseases 447 5.3 4.8
SI 63,728 759 1550 Typhus - - -
Rubella 1,433 17.1 37.3 Schistosomiasis - - -
Pertussis 353 4.2 6.1 Malaria 220 2.6 1.7
Mumps 18,361 219 109 Kala-azar - - -
Measles 2,612 31.1 55.9 JE 9 0.1 0.3
Hepatitis A 1,795 21.4 9.7 Dengue 218 2.6 4.5
Hepatitis B 4,847 57.7 25.2 Filariasis - - -
Hepatitis Db 5 0.1 0.3 Zoonotic diseases 5,300 63.1 23.8
NT - - - Brucellosis 35 0.4 0.7
Poliomyelitis - - - Hepatitis E 5,225 62.2 23.8
Diphtheria - - - HD 6 0.1 0.3
Bacteria diseases 73,851 879 248 Rabies 12 0.1 0.4
TB 48,338 575 95.4 Anthrax - - -
SF 25,475 303 231 Leptospirosis - - -
MM 16 0.2 0.4 H5N1 - - -
Leprosy 22 0.3 0.7 H7N9c 22 0.3 1
Gastrointestinal and enterovirus diseases 351,464 4,184.00 2743 SARS - - -
T/P 186 2.2 1.7 Quarantinable diseases 35 0.4 1.1
ID 41,589 495 214 HF 29 0.3 1.1
HFMD 308,266 3670 2714 Cholera 6 0.1 0.3
Dysentery 1,241 14.8 12.9 Plague - - -
AHC 182 2.2 3.1 Totald 661,267 7,872.20 2,837.90
Sexually transmitted and bloodborne diseases 137,036 1,631.00 272
Syphilis 94,688 1,127.00 165
Gonorrhea 37,937 452 136
AIDS 3,889 46.3 18.3
Hepatitis C 522 6.2 4.5

Notes: SI: Seasonal Influenza; NT: Neonatal Tetanus; TB: Tuberculosis; SF: Scarlet Fever; MM: Meningococcal Meningitis; T/P: Typhoid and Paratyphoid; ID: 
Infectious Diarrhea; HFMD: Hand, Foot, and Mouth Disease; AHC: Acute Hemorrhagic Conjunctivitis; AIDS: Acquired Immune Deficiency Syndrome; JE: Japanese 
Encephalitis; HD: Hydatid Disease; SARS: Severe Acute Respiratory Syndrome. HF: Hemorrhagic Fever.
a: average and standard deviation (SD) of monthly cases during 2013-2019. b: available from 2016-1. c: available from 2013-12; d: total numbers during 2013-2019. 
-: no cases.
Table 2: Distributions of monthly levels of air pollutants and weather 
variables during 2013-2019 in Shanghai.

PM2.5 (µg/m3) O3 (µg/m3)
Temperature 

(°C)
Relative humidity 

(%)

Minimum 17.4 60.1 4.3 57

10th 25.7 74.4 6.1 65

25th 33 98.5 10.1 68.8

Median 45.1 130.6 18.2 74

Mean 46.8 124.1 17.4 72.8

SD 19.6 33.3 8.3 5.9

75th 56.5 152.5 24.2 77

90th 74.5 161.2 28.3 80

Maximum 118.4 180.8 32 83
Notes: th: percentile of the distribution; SD: standard deviation.

The observed associations may stem from the hypothesis 
that air pollutants could potentially increase the presence of 
bacteria, viruses, or other pathogens in the ambient air (Fron-
tera et al. 2020). This phenomenon may be attributed to impacts 
due to specific constituents in urban PM2.5, chemical reactions 
of air pollutants (such as pH levels and heavy metals), tempera-
ture and humidity and other meteorological factors [10,19,24]. 
Furthermore, ambient air pollutants might play an immunosup-
pressive role that potentially compromising the normal immune 
system in human health in the human body [8,14].

Interestingly, the results suggest that PM2.5 exposure has a 
more immediate effect on NNIDs, with the peak observed at 
the current month, but O3 peaked at the lag 1 month, showing a 
more delayed effect. We hypothesize that their impacts may dif-
fer across different infectious stages or through varied pathways 
apart from inflammation and oxidative stress, but further explo-
rations are needed. In addition, the results from our sensitivity 
analysis (3 months of lag) indicated that the observed impacts 
were sensitive to different lags. Overall, we can observe that the 
higher lags (2, and 3 months of lag) the higher inconsistency of 
the coefficients.

Our study has some strengths. First, the present study in-
cluded more than 6 million infectious disease cases due to 43 
causes over 7 years in a mega city setting. This sample size pro-
vides high statistical power and enhances the generalizability of 
our findings to the urban population with similar climates. Sec-
ond, air pollutants and weather variables often display lagged 
effects, requiring flexible models that account for the exposure-
lag-response relationship. Here we used a modeling method 
that flexibly describes potential linear and lagged effects of air 
pollution. The effects of time-varying confounding factors were 
considered and controlled, including time trend (seasonality 
and long-term trend) and meteorological variables. Third, in 



Submit your Manuscript | www.austinpublishinggroup.com Austin J Public Health Epidemiol 11(3): id1169 (2024) - Page - 05

Austin Publishing Group

Table 3: Relative risk (and 95% CIs) of monthly number of infectious diseases per unit increase in air pollutants in the double-pollutant model.

Total Vaccine preventable Bacteria
Gastrointestinal and 

enterovirus
Sexually transmitted and 

bloodborne
Zoonotic

PM2.5 Single Lag Model

Lag0
1.09 (1.00, 

1.19)
1.22 (1.01, 1.47)

1.01 (0.92, 
1.11)

1.13 (1.00, 1.29) 1.02 (0.96, 1.08)
1.00 (0.87, 

1.15)

Lag1
0.90 (0.79, 

1.02)
0.77 (0.59, 1.02)

1.01 (0.88, 
1.15)

0.85 (0.71, 1.01) 1.00 (0.92, 1.09)
1.02 (0.85, 

1.24)

Lag2
0.99 (0.87, 

1.11)
1.07 (0.84, 1.36)

0.93 (0.84, 
1.04)

0.98 (0.82, 1.16) 0.94 (0.88, 1.00)
0.95 (0.81, 

1.11)
Distributed Lag 

Model

Lag0
0.92 (0.65, 

1.29)
1.47 (0.70, 3.11)

0.78 (0.57, 
1.07)

0.76 (0.48, 1.19) 0.82 (0.70, 0.97)
0.89 (0.53, 

1.47)

Lag1
0.75 (0.43, 

1.30)
1.37 (0.39, 4.78)

0.65 (0.39, 
1.09)

0.51 (0.25, 1.06) 0.71 (0.54, 0.92)
0.81 (0.35, 

1.89)

Lag2
0.86 (0.64, 

1.16)
1.28 (0.66, 2.47)

0.75 (0.57, 
1.00)

0.71 (0.48, 1.05) 0.79 (0.68, 0.91)
0.85 (0.54, 

1.34)

Net effect1 0.59 (0.18, 
1.89)

2.58 (0.19, 35.07)
0.38 (0.13, 

1.14)
0.28 (0.06, 1.28) 0.46 (0.26, 0.81)

0.61 (0.10, 
3.57)

O3 Single Lag Model

Lag0
0.91 (0.85, 

0.98)
0.84 (0.72, 0.97)

1.00 (0.91, 
1.09)

0.94 (0.85, 1.03) 0.98 (0.94, 1.03)
0.97 (0.87, 

1.08)

Lag1
1.05 (0.99, 

1.12)
1.20 (1.06, 1.36)

1.01 (0.93, 
1.09)

1.05 (0.97, 1.13) 1.01 (0.97, 1.06)
1.02 (0.94, 

1.12)

Lag2
1.00 (0.95, 

1.06)
0.93 (0.82, 1.05)

1.01 (0.95, 
1.08)

1.00 (0.93, 1.07) 1.01 (0.97, 1.05)
1.00 (0.92, 

1.07)
Distributed Lag 

Model

Lag0
1.09 (0.91, 

1.30)
1.25 (0.84, 1.86)

1.22 (0.97, 
1.55)

1.11 (0.85, 1.43) 1.11 (0.97, 1.27)
1.06 (0.77, 

1.45)

Lag1
1.29 (1.02, 

1.65)
1.75 (1.02, 3.01)

1.36 (0.98, 
1.88)

1.28 (0.90, 1.82) 1.19 (0.99, 1.43)
1.13 (0.73, 

1.76)

Lag2
1.18 (1.01, 

1.38)
1.29 (0.94, 2.23)

1.22 (0.99, 
1.50)

1.16 (0.92, 1.47) 1.12 (1.00, 1.26)
1.08 (0.82, 

1.42)

Net effect1 1.67 (0.95, 
2.93)

2.84 0.83, 9.75)
2.03 (0.96, 

4.28)
1.64 (0.72, 3.75) 1.48 (0.97, 2.25)

1.29 (0.47, 
3.53)

Notes: 1cumulative risk per 10 µg/m3 change in each air pollutant. Model adjusted for seasonality and long-term trend, mean temperature, relative humidity, and 
O3 or PM2.5.
the absence of a universally adopted classification for infectious 
diseases, we divided NNIDs into seven categories based on a 
categorization approach based on prior research.  This enabled 
a thorough examination of the links between air pollution and 
a range of notifiable infectious diseases, facilitating compre-
hensive comparisons and disparity assessments for the disease 
spectrum. Our findings from such categorization held potential 
for targeted interventions and further investigations into the 
distinctive pathogenic pathways underlying these diseases. This 
study also exhibits several limitations that should be interpreted 
with caution. First, we assume that all the morbidity cases have 
the same monthly exposure level of air pollutants and weather 
that were averaging at the city level. Such measurements do 
not fully represent spatial variations of exposure among popu-
lations living in urban and sub-urban areas in this mega city. 
Secondly, the study resolution is monthly average, which could 
influence the adequacy of the statistical models and the results. 
However, in single-city series investigations employing Poisson 
distribution, total number of event and the variation (SD) of ex-
posure are the two dominant factors determining the precision 
and power of the model, irrespective of the time resolution or 
duration [2]. Thirdly, we were unable to explore the association 
with air pollution for some specific categories of NNIDs due to 
limited sample size (<5000), such as vector borne diseases. Fur-
ther studies should focus on identifying specific diseases within 
each classification with larger sample sizes and more precise 
resolution. Moreover, we did not consider multicollinearity is-
sue that arise from immune population and strong autocorrela-
tion by disease transmission [16]. Meanwhile, other time-vary-

ing confounders were not considered, i.e., behavioral change 
and public health policy change.

Conclusions

In conclusion, our findings suggest that ambient air pollu-
tion is associated with infectious diseases, particularly the dis-
parities observed within the spectrum of diseases and across 
pollutants. These results have important implications for poli-
cymakers, as they can help inform interventions and mitigation 
measures to reduce the adverse effects of air pollution on in-
fectious disease in Shanghai. Overall, our study contributes to 
the lacked evidence highlighting the urgent need for evaluation 
and action to address the serious challenges for substantial air 
pollution-attributable infectious disease burdens.
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