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Abstract

Dynamic Contrast-Enhanced Computed Tomography (CE-CT) im-
ages play a vital role in clarifying lesion characteristics and surgical 
path planning for pulmonary interventional surgery. Lung deforma-
tions caused by respiration during scans make it difficult to accu-
rately fuse CE-CT images into Non-Contrast-Enhanced Computed 
Tomography (NCE-CT) images. A precise image registration algo-
rithm is a promising tool for handling problems related to aligning 
CE-CT images to NCE-CT images. In this study, we proposed a multi-
resolution B-spline registration algorithm to register two-phase 
CE-CT (intra-arterial and intravenous) images into NCE-CT images. 
Initially, an in-house dataset with 10 pairs of lung computed tomog-
raphy data (30 images during two phases of CE-CT and one phase 
of NCE-CT) was collected. Thereafter, we performed algorithmic 
optimization on this dataset and determined the optimal param-
eters for every step in the registration process. The Jacobian deter-
minant of the transformation was used to reveal the rationality of 
the transformation. The registration results demonstrated that our 
algorithm reduced the target registration error to 0.59±0.51 mm. 
Three-dimensional lung reconstruction showed that the images 
were well aligned after registration upon observation. Moreover, 
the deformation pat-tern of local parenchymal tissue indicated that 
the transformation was reasonable. Our proposed method is a fea-
sible and effective way of registering CE-CT and NCE-CT images. It 
can improve the accuracy and safety of surgical path planning and 
be applied in image-guided intervention methods, such as image-
guided radiotherapy and computer-assisted surgical navigation. 
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Introduction

Dynamic Contrast-Enhanced Computed Tomography (CE-CT) 
images, including Intra-Arterial Contrast-Enhanced Computed 
Tomography (IA-CT) and intravenous contrast-enhanced com-
puted tomography (IV-CT) images, accompanied with Non-Con-
trast-Enhanced Computed Tomography (NCE-CT) images have 
great potential in many clinical applications, such as clinical di-
agnosis, treatment planning, and image-guided interventions 
[1,2]. CE-CT involves acquiring a time sequence of images after 
contrast agent injection. Parametric images are then generated 
by fitting a pharmacokinetic model to its follow-up at each vox-
el, as the estimated parameters yield valuable information on 
healthy tissues and lesions [3]. The primary purpose of CE-CT 
is to further clarify lesion characteristics. More specifically, it is 

intended to clarify the relationship between occupying lesions 
and adjacent tissues and to better visualize the structures of the 
lungs and mediastinum. CE-CT can provide detailed anatomi-
cal structure information of the pulmonary vessels and lesions, 
while NCE-CT cannot.

With the development of image-guided navigation systems, 
the accuracy and efficiency of complex surgical interventions 
have been greatly improved [4]. In image-guided radiotherapy, 
CE-CT images are often fused with NCE-CT images and used for 
tumor target and critical structure delineation. However, pa-
tient motion, especially respiratory motion, may lead to an inac-
curate fusion between CE-CT and NCE-CT images, reducing the 
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treatment plan accuracy. In conventional image-guided inter-
ventional techniques, such as Computed Tomography (CT)-guid-
ed lung biopsies, patients are often asked to hold their breath 
for lung lesion localization in clinical practice. Repeated scan-
ning cannot also be avoided, which can cause pain and increase 
radiation exposure. With the help of robot-assisted navigation 
systems, tracking devices, such as optical and electromagnetic 
tracking systems, can be used to track the patient anatomy in 
real time [5]. However, the relationship between the static guid-
ance information and the moving anatomy remains unknown. 
Modeling the correlation of respiratory motion with the human 
surface then becomes a great challenge [6,7].

Image registration is a promising tool for handling problems 
related to aligning CE-CT images to NCE-CT images to resolve 
the motion effects. In medical imaging tasks, image registration 
aims to find a spatial correspondence between the points in the 
first and second image sets that has the exact patient-based 
coordinates or represents the same anatomic position [8]. In 
pulmonary lesion surgeries, data obtained from CE-CT images 
are often registered to data obtained from NCE-CT images to 
avoid the pulmonary vessels and to determine target points in 
the surgical path planning. The displacement field and the Jaco-
bian determinant of the lung obtained from registration could 
thus be used for respiratory motion modeling. However, with 
existing techniques, the registration accuracy remains unsatis-
factory. These techniques cannot meet the need during actual 
interventional surgery because of the asymmetric information 
between enhanced and non-enhanced images, including the 
gray distribution.

Some organs, such as the lung and heart, have internal aber-
rations due to autonomous movements during corresponding 
time intervals, making the images acquired at different times 
vary in characteristics. Currently, non-rigid registration is usu-
ally employed for these organs [9]. However, many challenges 
remain to be solved, such as local correspondence deficiency 
and large deformation of images, irregular physiological move-
ment of the organ itself, and appearance of other factors during 
surgery.

B-spline [10] is a well-known approach for non-rigid image 
registration, since a change in a control point affects only the 
transformation within a local neighborhood of the point [11]. 
This method works by placing a uniformly spaced three-dimen-
sional (3D) grid over the volume to be registered, with the lat-
tice points acting as control points for tissue displacement. The 
displacement of each control point results in a deformation of 
the region surrounding the point in a way that makes the overall 
deformation as smooth as possible. B-spline has already shown 
potential for medical applications [12,13]. However, the grid 
size is difficult to determine and cannot be applied to all images. 
A coarse control grid allows for modeling global non-rigid de-
formations, while a fine control grid allows for modeling highly 
local deformations [14]. However, the registration is coarse with 
a large grid interval. Further, the global displacement is not ex-
tracted with a small grid interval, and it is easy to resort to a 
local optimal solution. Therefore, we employed a changing grid 
from coarse to fine for registration, which is suitable for most 
images.

Pulmonary image registration is challenging owing to the 
non-homogeneous soft tissues interlaced by the airways and 
vessels and the non-uniform intensity change during respi-
ration. Therefore, we proposed an intensity-based non-rigid 
registration based on B-spline transformation with a coarse-to-

fine strategy in this study. To our knowledge, existing intensity-
based methods [15,16] are applied only between NCE-CT im-
ages and four-dimensional CT images in lung CT registration. No 
study has yet reported the application of pulmonary CE-CT im-
age registration. Therefore, we applied our proposed algorithm 
to register pulmonary CE-CT (IA-CT and IV-CT) images to NCE-CT 
images.

Our contributions in this work are summarized as follows:

We employed B-spline transformation [17] for lung CT-to-CT 
(IA-CT, IV-CT, and NCE-CT) image registration and algorithmic 
optimization for a large displacement of lung data and deter-
mined the optimal parameters for every step in the registration 
process.

We presented a multi-resolution B-spline transformation 
method with changing grid intervals driven by commonly used 
intensity-based criteria for lung image registration. Images were 
smoothed and down-sampled to reduce complexity using a ran-
dom sample and the B-spline-based interpolation algorithm, 
with Mutual Information (MI) as similarity measurements.

We generated the deformation field and the Jacobian deter-
minant after registration, which could help model respiratory 
motions.

The experiments were conducted on our in-house dataset 
with 10 pairs of lung-enhanced CT data, reducing the Target 
Registration Error (TRE) to 0.59±0.51 mm. We also demonstrat-
ed image registration via observation based on 3D reconstruc-
tion. Furthermore, the Jacobian determinant of transformation 
was used to reveal the rationality of the transformation and 
the deformation pattern of local parenchymal tissue, which in-
dicated that the transformation was reasonable. This method 
reduced the impact of lung deformation caused by respiratory 
movements on registration and could then be used in subse-
quent surgical navigation systems.

Materials and Methods

Dataset and Annotation

We collected lung CT data from 10 patients who underwent 
one phase of NCE-CT and two enhanced phases of CE-CT (IA-CT 
and IV-CT) at Changhai Hospital of Shanghai. Each CT image had 
a matrix size of 512×512 pixels in-plane and pixel spacing rang-
ing from 0.654×0.654 mm to 0.912×0.912 mm. The number of 
slices varied from 320 to 395, and the slice thickness was 1 mm. 

Figure 1: Axial slice of the NCE-CT and CE-CT images of case 1: (a) 
NCE-CT; the gray value of F_C is 7; (b) IA-CT; the gray value of F_A is 
220; (c) IV-CT; the gray value of F_V is 143. Overlaying lung masks of 
case 9: (d) axial view; (e) coronal view; (f) sagittal view; with green 
masks representing the NCE-CT images, red masks representing the 
IA-CT images, and blue masks representing the IV-CT images.
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The three CT images were obtained in the breath-holding state 
after respiration. Because of the two different enhancements, 
the intensity of the same feature point in the three images dif-
fered. Meanwhile, owing to the different respiration habits and 
control capabilities of patients, the three images of one patient 
may have different lung volumes corresponding to small or 
large deformations. Figure 1 shows the three CT images for case 
no. 1 and no. 9.

Generally, intra-subject CT images of the lung contain iden-
tifiable feature points, such as airway–tree and vascular–tree 
branch points. Herein, we randomly labeled 20 vascular fea-
ture points in each lobe of the lung (upper left, lower left, up-
per right, middle right, and lower right lungs) for each case un-
der the guidance of specialized doctors. A total of 100 feature 
points were obtained. The corresponding feature points were 
found in the NCE-CT, IA-CT, and IV-CT images. To ensure annota-
tion accuracy, we manually annotated all feature points. Figure 
2 shows example feature points in the three CT images.

To verify the registration between the different CT images, 
we considered the NCE-CT images as the fixed images and the 
IA-CT and IV-CT images as the moving images. We studied the 
IA-CT images registered to the NCE-CT (N-A) images and the IV-
CT images registered to the NCE-CT (N-V) images by compar-
ing the B-spline registration displacements with the manually 
annotated feature point displacements (gold standard param-
eter). Supplementary Figure 1 shows the manually annotated 
displacements (Euclidean distance of the lung feature points) 
for all 10 cases. The pulmonary displacements varied from 
1.54±0.89 mm (4-N-A) to 19.79±10.36 mm (9-N-A).

Registration

The process of our proposed registration algorithm for the 
fixed and moving CT images is shown in Figure 3. The NCE-CT 
images were treated as the fixed images and the IA-CT and IV-
CT images as the moving images. First, the fixed and moving 

images were smoothed and down-sampled to reduce complex-
ity, defined as a Gaussian pyramid [26] (Figure 4). A sampler 
was used to sample the fixed image pixels for similarity mea-
surement. Second, optimization was performed to calculate the 
transformation parameters. An interpolator was used for inter-
polating the moving image pixels for each transform iteration. 
Finally, we assessed the cost function or metrics to evaluate the 
registration quality.

Mathematically, the goal of the registration of a moving im-
age to a fixed image is to find a displacement  to form a 
transformation  that makes  
spatially aligned to . Herein,  represents 
the vector of the transformation parameters. Registration is an 
optimization problem used to find the solution  that minimizes 

:

    (1)

Where C is the cost function that measures the similarity 
of the fixed and deformed moving images. Since CE-CT and 
NCE-CT images are multi-modal images with different intensity 
distributions, MI [18] was employed as the similarity measure-
ment. The optimization algorithm iteratively searched the opti-
mal spatial transformation parameters based on the derivative 
of the measurement function.

Since the registration result is mainly determined by the im-
age quality, lung deformation size, and registration parameters, 
three critical registration components were studied in our ex-
periments, including sampling strategies, multi-resolution strat-
egies, and similarity measurements. The experiments were con-
ducted using the Elastix software, a toolbox for intensity-based 
medical image registration [29].

The hyper-parameters used in the experiments were as fol-
lows:

Sampling, Interpolation, and Optimization

Feature selection is the most critical step in the registration 
process. As we adopted intensity-based image registration, all 
voxels inside the lungs were extracted as feature spaces. We se-
lected only the voxels in the feature space to compute the cost 
function and its derivative. Random sampling has been shown 

Figure 2: Distribution of the feature points (green points) selected 
on (a) NCE-CT; (b) IA-CT; and (c) IV-CT. The vessel trees are marked 
as red curves. The lung contours are colored blue. One example 
feature point (red cross) is highlighted at the vessel-tree branch on 
(d) NCE-CT, (e) IA-CT, and (f) IV-CT in the original images.

Figure 3: Process of the proposed registration algorithm for two 
CT images.

Figure 4: Multi-resolution strategy using a Gaussian pyramid (stan-
dard deviation =4, 2, and 1) and resampling spacing (8, 4, and 2 
voxels, respectively).
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to improve the smoothness of the cost function [19]; thus, we 
randomly selected a user-specified mask region from the fixed 
images.

Since each voxel in the CT image is represented by an inte-
ger, a feature voxel in the moving image may not be found in 
the fixed image. Interpolation is generally required to resolve 
this problem. Herein, we applied a B-spline-based interpola-
tion algorithm [17], which provides a smoother interpolation by 
considering multiple points around the target point. The selec-
tion of the spline functions and the order of the selected spline 
functions determine the smoothness of the interpolated image 
grayscale and the amount of computation. The higher the or-
der, the better the image quality, but with higher computational 
costs [20]. Considering both the smoothness and computation 
costs, we employed linear interpolation in the registration pro-
cess and cubic B-spline interpolation for the image generation 
phase.

For optimization, we used an adaptive stochastic gradient 
descent, a more advanced version of the standard gradient de-
scent with fewer parameters to set, which has been proven to 
be more robust [21].

B-Spline Spatial Transformation with Multi-resolution 
Strategies

The transformation model determines the deformations be-
tween the moving and fixed images. Herein, we employed B-
spline transformation with multi-resolution strategies. B-splines 
are a linear combination of B-spline base curves and are calcu-
lated as follows [11]:

  (2)

where  is the control point;  is the cubic multidimen-
sional B-spline polynomial [20];  is the B-spline coefficient 
vector (control point displacement);  is the B-spline control 
point interval; and  is the set of all control points within the 

compact support of the B-spline at . B-spline transformation 
aims to refine the grid of registration images   
                            [23]. 
Specifically, an image  is defined to be registered with resolu-
tion  and a grid  with  control points 
at coordinates  over the image area, as depicted in Fig. 5. 
The grid interval in the , , and  directions is  with  con-
trol points,  with  control points, and  with  control 
points, respectively. Each control point has degrees of freedom 
in the three directions, so that the degrees of freedom for  is 

 as follows:

     (3)

Where  represents downward rounding. The number is 
added to 3 to the base of the downward rounding in the , 
, and  directions to allow all regions, including the boundary 
points, in  to participate in the calculation of the spline fitting. 
It also satisfies the need for the subsequent calculation of the 
cubic B-spline transformation.

The B-spline transformation of any point  on 
the moving image can be expressed as follows [24]:

                                                                                   (4)

with , , , , , 
.  

is the m-th cubic B-spline basis function [25]:

  

      (5)

The above-indicated equation acts as a weighting function, 
weighting the effect of each control point on  by the 
distance from the control point to . The displacement of 
each control point in each direction is solved via optimal search-
ing. The B-spline basis function can easily simulate arbitrary 
nonlinear transformations and achieve good registration for im-
ages with arbitrary irregular deformations. As shown in Fig. 6, 
the movement of each control point finally formed a control 
grid with nonlinear deformation. The free deformation model 
is essentially a local control problem of local control by the cu-
bic B-spline. In cases where in the grid spacing  
is determined, the transformed position of each point  
is determined only by the grid . Simultaneously, any point of 
the image to be registered is affected only by the 4 × 4 control 
points in the nearby areas. The image to be registered will fol-
low the grid deformation in the same manner and to the same 
extent by deforming the space formed by the control grid.

Therefore, the image resolution and grid interval of the B-
spline determine the accuracy and efficiency of registration. 
When the grid interval is large, the efficiency is high with a low 
registration accuracy. In contrast, a small interval causes more 
flexible deformation but may generate unrealistic results and 
exhibit low efficiency. The fixed grid interval makes it difficult to 
balance the registration accuracy and efficiency. Moreover, in 
the actual image registration, it is unknown how large the grid 
interval should be set to obtain the most suitable result.

To overcome the limitation of fixed grid intervals, we applied 
the multi-resolution B-spline transformation method to bal-

Figure 5: Schematic diagram of the initialized grid. The actual grid 
is three dimensional, and the grid at the z direction is the same as 
that at the x and y directions.

Figure 6: (a) Original images; (b) gird refinement; (c) control point 
movements.
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ance accuracy and efficiency with changing grid intervals. In this 
strategy, hierarchical registration is used with the interval of the 
grid changing from large to small. The first layer uses a larger 
interval to simulate globally large deformations for coarse reg-
istration. The following layers use a gradually smaller grid inter-
val to simulate locally small deformations for fine registration 
(Supplementary Figure 2).

Evaluation Metrics

The evaluation of image registration accuracy is essential in 
quantifying the performance of registration algorithms. Ow-
ing to the lack of a gold standard method, multiple metrics are 
needed to evaluate the performance of registration algorithms. 
In our experiments, we assessed the registration results via TRE 
application, observation, and Jacobian determinant assessment 
[27]. The TRE was mainly utilized as a quantitative assessment 
to compare the performances of different registration mod-
els. It consists of identifying well-defined corresponding target 
points on registered images and measuring the 3D distance be-
tween them. In contrast, observation and Jacobian determinant 
assessment were conducted to assess the final optimal registra-
tion result.

The TRE was calculated as follows: 1) Manually annotate 
the feature point coordinates  in the fixed image and the 
corresponding feature point coordinates  in the moving im-
age; 2) calculate the 3D displacement  of the annotated 
feature points in the fixed image using the proposed regis-
tration algorithm; 3) calculate the feature point coordinates 

after the displacement of the registra-
tion algorithm at ; and 4) calculate the Euclidean distance 
between  and  as the TRE:

  (6)

With the observation method, we input the fixed and de-
formed moving images into visualization software to observe 
the degree of feature overlap. We then simultaneously per-
formed 3D reconstruction of these images to monitor the de-
gree of vascular overlap.

The Jacobian determinant [27] of the transformation field 
derived from image registration can be used to estimate local 
tissue deformation [28]. It estimates the pointwise expansion 
and contraction during deformations. The Jacobian determi-
nant of the transformation  was calculated as follows:

      (7)

Where  represents vectors in three dimen-
sions of the deformation field at location . A Jacobian deter-
minant of 1 indicates no volume change; >1, expansion; 0–1, 
shrinkage; and ≤0, folding. The quality of the displacement vec-
tor field can be quantified by indicating the fraction of foldings 
per image and determining the standard deviation of the Jaco-
bian determinant.

Results

Sampling Strategies

Table 1 shows the TRE (mean±sd) among the 10 cases with 
and without a mask, corresponding to sample voxels from the 
entire images and inside the masks, respectively. Supplemen-
tary Table 1 shows that the registration effect greatly improved 
after limiting the sample voxels inside the mask, especially for 
case 9-N-A with the most considerable deformation.

Multi-Resolution Strategies

The influence of the multi-resolution strategy was examined. 
Two critical components of the multi-resolution strategy were 
evaluated: final control point spacing and number of final con-
trol point resolution layers.

First, registration was performed using the final control point 
spacing: 64, 32, 16, or 8 mm. The results (Table 1 and Supple-
mentary Table 2) showed that the performance improved from 
64 mm to 16 mm. However, when the spacing was reduced to 8 
mm, the accuracy had minimal improvements, and registration 
took longer. These results indicate that a final grid of 16 mm is 
sufficient for images with both small and large deformations, 
while a finer grid may result in unrealistic deformations and is 
more time consuming.

Second, registration was performed using the number of 
resolution layers: three, four, five, or six. The results (Table 1 
and Supplementary Table 3) showed that the performance kept 
improving from three resolution layers to four resolution lay-
ers. However, when the number of resolution layers increased 
to five or six, the accuracy had almost no improvements, and a 
longer registration time was needed. These results indicate that 
the best number of resolution layers is four.

In conclusion, four resolution layers with a final grid interval 
of 16 mm is the best option for ensuring both accuracy and ef-
ficiency.

Similarity Measurement

As mentioned above, we used MI as the cost function. The 
critical component of MI is the number of bins of the joint histo-
gram; thus, we employed histogram bins of 8, 16, 32, or 64. As 
shown in Table 1 and Supplementary Table 4, the TRE continued 
to reduce with the number of histogram bins rising from 8 to 32. 
However, when the number of histogram bins reached 64, the 
performance started to decline. After overall consideration, the 
best number of histogram bins is 32.

Final Results and Analysis

We calculated the TRE in all 10 cases with the manually an-
notated feature points. The results for each case are shown in 
Supplementary Fig. 3. We also present the displacement and 
TRE of case 9-N-A (with the most significant lung displacement) 
at each feature point in Supplementary Fig. 4. The mean TRE 
was 0.59±0.51 mm for all 10 cases. For the large-displacement 

Table 1: Comparison of the TRE (millimeter) of the sampling strategies, multi-resolution strategies, and similarity measurements.

Mask Final control point spacing Number of resolution layers Histogram bins

Before reg Without With 64 32 16 8 3 4 5 6 8 16 32 64

5.52±5.46 1.22±2.51 0.59±0.55
0.88

±0.82
0.68

±0.59
0.59

±0.55
0.59

±0.61
0.79

±2.16
0.59±0.51 0.59±0.50 0.59±0.55 1.06±2.08 0.72±0.98 0.59±0.51 0.75±1.95
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images (case 9 with an average dis-placement of 20.0 mm), the 
TRE was 0.96±1.60 mm, indicating that the features in most 
lung regions were well matched, except for some individual fea-
ture points.

Using visualization software, we showed the 3D reconstruc-
tion overlapping of the blood vessels before and after registra-
tion (Supplementary Figure 5). Upon observation, the pulmo-
nary vascular points were aligned well after the registration. 
The Jacobian determinant of all 10 cases is shown in Table 2 
and Supplementary Figure 6. The Jacobian determinant in the 
remaining cases was around 1; this finding indicated that the 
lungs underwent different degrees of expansion and shrink-
age, except for case 9-N-A, wherein most of the Jacobian de-
terminant was <1 (substantial lung shrinkage). The absence of 
a Jacobian determinant of ≤0 in all 10 cases indicated that the 
transformation was reasonable.

Conclusion

Pulmonary CE-CT is essential for clarifying lesions and ves-
sels in the lungs. Similarly, registration of CE-CT and NCE-CT im-
ages is of great clinical importance, as it allows image fusion 
and evaluation of respiratory movements of the lungs. B-spline 
is a well-known approach for non-rigid image registration, but 
the grid size is difficult to determine and cannot be applied to 
all images. Therefore, we employed a changing grid from coarse 
to fine for the registration in our work. The main contribution of 
this study was that we attempted to apply our multi-resolution 
B-spline registration algorithm for CE-CT and NCE-CT images 
and to tune the parameters in the main components of regis-
tration to generate the best registration result. We also intend-
ed to generate the deformation field after registration, which 
could help model respiratory motions.

In our experiment, the registration algorithm was evaluated 
using CT images collected from Changhai Hospital of Shanghai. 
Twenty registrations of ten CT image pairs were performed, with 
the NCE-CT images set as the fixed images and the IA-CT and IV-
CT images as the moving images. We applied multi-resolution 
B-spline transformation to align lung-enhanced CT images using 
lung contours and blood vessels as regions of interest, adaptive 
stochastic gradient decent as an optimizer, and linear as well as 
B-spline interpolation as interpolation algorithms. Furthermore, 

Table 2: Jacobian determinant of each case in our dataset.
Statistics Mean Std Minimum Maximum Folding

Case 1
N-A 1.01 0.04 0.89 1.18 0
N-V 0.92 0.07 0.62 1.26 0

Case 2
N-A 1.12 0.11 0.80 1.72 0
N-V 1.12 0.10 0.79 1.65 0

Case 3
N-A 1.00 0.12 0.73 1.83 0
N-V 0.99 0.10 0.77 1.47 0

Case 4
N-A 0.97 0.06 0.64 1.35 0
N-V 1.01 0.05 0.83 1.30 0

Case 5
N-A 1.01 0.03 0.83 1.26 0
N-V 1.02 0.04 0.86 1.30 0

Case 6
N-A 1.01 0.05 0.90 1.41 0
N-V 0.92 0.06 0.65 1.39 0

Case 7
N-A 1.03 0.05 0.91 1.69 0
N-V 1.04 0.04 0.81 1.56 0

Case 8
N-A 1.04 0.06 0.78 1.45 0
N-V 1.11 0.08 0.83 1.55 0

Case 9
N-A 0.69 0.14 0.29 1.45 0
N-V 0.87 0.09 0.46 1.46 0

Case 10
N-A 1.00 0.04 0.79 1.23 0
N-V 0.96 0.05 0.67 1.28 0

a Gaussian pyramid was used to smooth and down-sample the 
images in multi-resolution transformation.

We assessed the registration results based on the TRE, ob-
servations, and Jacobian determinant. The registration results 
demonstrated that our algorithm reduced the TRE to 0.59±0.51 
mm. Upon observation with two-dimensional CT and 3D recon-
struction, the feature points were found to be well aligned af-
ter registration. Furthermore, the Jacobian determinant of the 
transformation indicated that the transformation was reason-
able. In general, our proposed method reduced the impact of 
lung deformation caused by respiratory movements on registra-
tion and could then be used in subsequent surgical navigation 
systems.

Considering the above-indicated analysis, we obtained good 
registration results. However, since our evaluation was based 
on only 10 cases, more CE-CT and NCE-CT data need to be col-
lected and annotated to further evaluate the robustness of our 
algorithm. Regarding the shortage of extensive deformation 
data, our future research direction will focus on improving the 
accuracy of the registration algorithm for large-displacement 
and low-resolution images.
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