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Abstract

Objective: The Thyroid Imaging Reporting and Data Systems (TI-RADS)
is a standard terminology that classifies thyroid nodules according to their
potential risk of cancer to reduce unnecessary biopsies, minimize variations in
interpreting thyroid nodule images, and improve diagnostic accuracy. This study
aims to comprehensively review articles that utilize Al techniques to develop
decision support systems for analyzing ultrasound images of thyroid nodules,
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Materials and Methods: We followed a five-step process, this included
identifying the key research questions, outlining the literature search strategies,
establishing criteria for including and excluding studies, assessing the quality
of the studies, and extracting the relevant data. We created a comprehensive
search string to gather all relevant English-language studies up to January
2024 from the PubMed, Scopus, and Web of Science databases, and we also
followed the PRISMA diagram.

Results: In this review, forty-four papers were included, and the most
important properties of these papers, including dataset characteristics, Al
technical specifications, results and outcome metrics, metrics, limitations, and
contributions, were extracted.
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Conclusion: We evaluated the technical characteristics and various aspects
used in the development of artificial intelligence CAD systems based on various
TI-RADS. This review demonstrates that Al advancements, especially deep
learning methods, have significantly enhanced CAD systems for evaluating
thyroid nodules. However, comprehensive datasets, multimodal images, and
standard evaluation metrics are needed to further enhance machine learning
models. Our study aims to provide researchers and physicians with a summary
of the current advancements in this field to guide future investigations.
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Introduction

The thyroid gland, a small yet crucial endocrine organ situated in
the anterior aspect of the neck, plays a significant role in the regulation
of metabolism and various bodily functions [1]. Thyroid nodules
are frequently encountered in clinical practice, with the majority
of cases being benign. However, accurately differentiating between
benign and malignant nodules to guide appropriate management
strategies is paramount. The evaluation of thyroid nodules often
involves a combination of clinical assessment, imaging studies such
as ultrasound, and fine needle aspiration biopsy for cytological
examination [2].

Fine needle aspiration (FNA) is an invasive procedure used to
evaluate thyroid nodules for the presence of cancerous cells. However,
itis common practice for many nodules to undergo a biopsy to identify
a small percentage of cases that may be malignant. It is important
to consider the potential burden that FNA procedures can place on

healthcare systems, as they can result in significant costs and create
stress and anxiety for patients. Therefore, it is crucial for healthcare
providers to carefully evaluate the necessity of such procedures
and consider alternative approaches when possible [3,4]. Thyroid
ultrasound imaging plays a crucial role in the identification of thyroid
nodules because of its accessibility, noninvasive nature, and cost
effectiveness. This procedure allows clinicians to visualize the thyroid
gland and any abnormalities present within it [5]. Furthermore, it is
a safe and convenient diagnostic tool that can be easily performed
in outpatient settings, making it a valuable resource for monitoring
thyroid health and guiding treatment decisions [5].

The Thyroid Imaging, Reporting, and Data System (TI-RADS)
was established to provide a standardized framework for categorizing
thyroid nodules according to their specific characteristics associated
with risk. This system aims to mitigate issues surrounding the
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variability and low reproducibility that often arise in the detection
and interpretation of nodule features among different physicians
[6]. By implementing TI-RADS, healthcare providers can ensure a
more consistent and reliable approach to evaluating thyroid nodules,
ultimately leading to more accurate diagnoses and treatment decisions
for patients [7]. There are several variations of TIRADS, each with
its own specific criteria and scoring system. These variations, such
as the American College of Radiology (ACR) TIRADS [8], the
Korean Society of Thyroid Radiology (KTIRADS) [9], ACE [10],
ATA [11], Kwak-TIRADS [12], and the European Thyroid Imaging
and Reporting System (EU-TIRADS) [13], aim to standardize
the interpretation and management of thyroid nodules. Al-based
approaches, such as machine learning and deep learning algorithms,
have demonstrated significant potential in enhancing the accuracy
and efficacy of thyroid nodule evaluation. These advancements not
only help reduce variability among observers but also contribute to
improving diagnostic outcomes by identifying patterns and trends
that may not be easily identifiable by clinicians alone [14-18].

With advancements in medical technology, computer-aided
detection (CAD) systems have been developed to assist radiologists in
analyzing ultrasound images of thyroid nodules. These CAD systems
can help in the early detection of suspicious nodules, leading to
timely intervention and improved patient outcomes. By combining
the expertise of radiologists with the efficiency and accuracy of CAD
systems, healthcare professionals, by minimizing the subjective
nature of traditional diagnostic methods, can provide more precise
and reliable diagnoses and treatment plans for patients with thyroid
nodules [18-20].

The development of Al-driven TIRADS models, which combine
computerized analysis of ultrasound images with established risk
stratification systems, represents a progressive step in the field of
thyroid imaging [14,21,22].

The classification of thyroid nodules via various TIRADS systems
has been the subject of several studies, highlighting the importance of
evaluating these systems in depth. The primary objective of this study
is to explore the utilization of artificial intelligence CAD systems in
the ultrasound image classification of thyroid nodules via various
TIRADS systems. It is crucial to consider factors such as dataset
characteristics, technical specifications of the network, evaluation
metrics, results, advantages, obstacles, and limitations.

By analyzing the literature, this research aims to offer a
comprehensive understanding of the role of AI techniques in the
development of TIRADS-based decision support systems for this
purpose to highlight the challenges and prospects that lie ahead in
the integration of these groundbreaking technologies into clinical
settings. However, to the best of our knowledge, no systematic review
has explicitly focused on this field. The insights gained from this study
could serve as a valuable resource for researchers and developers
looking to create more effective systems with improved efficiency.
Ultimately, the implementation of these systems could help reduce
unnecessary thyroid nodule biopsies, address issues of over care,
enhance the reproducibility and reliability of ultrasound diagnostics,
and provide educational support for less experienced physicians.

To carry out these tasks, the following research questions are

proposed to direct this systematic literature review:

- What s the best artificial intelligence technique for implementing
a thyroid nodule classification system based on TI-RADS?

o What is the size of the appropriate dataset for the successful
implementation of these systems?

e What are the most common neural network architectures
used in these systems?

o What is the most common TI-RADS used in these systems?

e What are the most common evaluation metrics in these
systems?

e What are the limitations and future directions in this field?

The remainder of this paper is structured as follows: Section 2
outlines the methodology of the systematic review. Section 3 details
the findings of various uses of AI systems based on TIRADS on
ultrasound images of thyroid nodules. Finally, a discussion will be
presented, and conclusions and future works will be drawn.

Materials and Methods

This systematic review involves five main steps: literature search,
study selection, study quality assessment, data extraction, and
analysis. Further details of each step are presented in the subsequent
subsections. Importantly, the protocol for this systematic review
was registered in the PROSPERO database in August 2024 [23].
(Registration number: CRD42024551311).

Literature Search

This study conducted a systematic review to retrieve all relevant
English language articles up to January 2024 via the PubMed, Scopus,
and Web of Sciences databases. The search terms included "Thyroid
Imaging Reporting and Data System", "Artificial Intelligence",
"ultrasonography” and their related terms (Table 1). In addition,
the Medical Subject Headings (MeSH) vocabulary and synonym
keywords were utilized.

Study Selection

This study adheres to the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines [24]. To select
relevant articles, we defined the inclusion and exclusion criteria.

The inclusion criteria were as follows:

1- Articles that have implemented an Al system based on TIRADS.
2- Articles on ultrasound imaging of the thyroid.

The exclusion criteria were as follows:

1. Nonoriginal articles such as review articles, comments, and
editorials.

2. Conference abstracts and unpublished articles.
3. Articles that do not use TIRADS.
4. Articles that do not include ultrasound images.

5. Articles that evaluate existing AI systems on the basis of
TIRADS.
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Study Quality Assessment

The included studies were subjected to a quality assessment
process to evaluate the credibility and strength of the articles. We used
a modified quality assessment with 13 questions and three options
(“Yes”= 1, "“Partly”= 0.5, and “No’= 0), as suggested by Sharifi et al.
[18] (Table 1S).

Two independent researchers with backgrounds in systematic
review, machine learning, deep learning, and medical informatics
evaluated the quality of the included studies and resolved any
discrepancies in their findings by consulting a third researcher to
reach a unanimous conclusion.

Data Extraction

Two reviewers independently evaluated and extracted data from
the included articles, using a predesigned table in Microsoft Excel to
ensure accuracy. A pilot test was subsequently conducted on twenty
random studies to confirm the reliability of their data extraction. The
calculated kappa statistic [25] indicated strong agreement in data
interpretation (kappa statistic = 0.85). The following major aspects
of the included studies were extracted: paper information, patient
information, dataset characteristics, technical specifications, results,
outcome metrics, limitations, and contributions.

Data Analysis

In this section, the major aspects of the articles that implemented
a TIRADS-based Al system are analyzed.

Results
Literature Search and Study Selection

The identification of potentially related articles to TIRADS-based
artificial intelligence systems on US images of thyroid nodules in this
systematic review adheres to the PRISMA flow diagram and guidelines
[24]. Figure 1 displays the PRISMA diagram for this study, which
comprises four primary phases. The initial phase involved identifying
relevant English language articles via the PubMed, Scopus, and Web
of Sciences databases until January 2024, on the basis of the search
strategy outlined in Section 2-1. Initially, 618 papers were found, and
after removing duplicates, 521 papers remained. In the next stage,
after screening the titles and abstracts, 443 unsuitable articles were
removed, leaving 88 articles for further consideration. In the third
phase, we evaluated the suitability of the articles by reading the full
texts and applying the inclusion and exclusion criteria outlined in
Section 2-2. As a result, 44 articles were eliminated from the study.
In the fourth phase, 44 articles were chosen for additional qualitative
analysis.

Literature Sources

The analysis involved reviewing 44 selected articles to investigate
TIRADS-based artificial intelligence research on ultrasound images
of thyroid nodules.

These articles were published from 2017--2024. They were
categorized as follows: Q1 (66%), Q2 (27%), and Q3 (7%). Summary
details regarding these articles can be found in Table 2S of the
Supplementary data.

PubMed Scopus Science Direct
a=103 a=188 | a=32§
£ s
Records identified through database
g searching
-; (n=618)
Records after duplicates removed
S (n=521)
L ]
Records screened Records excluded(title)
{n=321) (n=304)

g
&
5

Records screened Records excluded(abstract)

{(a=217) (n=129)
Full-text articles excluded
(n=4)
* o ulerascond imaging (%)
TIRADS (3)
z Full Ir:l articles assessed ottt SO0 )
z for eligibahity ‘ cle (d)
2 (a=83) Compariscn of Different TRADS
=] gusdelines (5)
only evaluation existing Al yvstems (24)

] Srudies included in
3 qualitative synthesis
§ (n =44)
Figure 1: PRISMA flow diagram of this study.

Study Quality Assessment

To evaluate the quality of the selected articles, two independent
researchers responded to 13 quality answers [18] for articles that
implemented a TIRADS-based Al system as previously stated. If there
were any discrepancies in their evaluations, they sought advice from
a third researcher. The final scores were subsequently calculated by
adding the scores of these answers for each article that could receive a
score ranging from zero to 13.

Furthermore, the articles are divided into three groups on the
basis of their scores, namely, "low-score," "mid-score,” and "high-
score", by splitting the score range into three equally sized intervals:
[0 -4.33), [4.33 - 8.66), and [8.66 - 13], respectively.

The details and results of the quality questionnaire are shown
in Table 3S in the supplementary data. According to the computed
scores, the articles are distributed as follows: 2% low-score, 17% mid-
score, and 81% high-score categories.

Datasets type and number
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Figure 2: Dataset type and number of TIRADS-based Al systems for

thyroid US images.
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Figure 3: Preprocessing methods used in the included articles.

Data Analysis

In this review, forty-four papers used TIRADS in the
implementation of an Al system for analyzing ultrasound images of
thyroid nodules.

Figure 1S in the supplementary data illustrates the number
of articles by year until January 2024, and the most important
properties of these papers, including dataset characteristics, Al
technical specifications, results and outcome metrics, limitations, and
contributions, are presented in Table 2, Table 3, and Table 4.

Discussion

The primary objective of this study was to conduct a systematic
review of articles related to TIRADS-based CAD systems for analyzing
thyroid ultrasound images.

Among the initial 618 publications, 44 articles published up to
January 2024 were selected for this study. As depicted in Figure 18,
articles in this field have been published from 2017 to 2024, with the
highest number of publications in 2023 (n=14, 30.4%). All the articles
that have utilized TIRADS guidelines to implement AI systems for
analyzing thyroid ultrasound images have focused on classification
tasks. The expected growth in this field is due to CAD systems being
designed to detect suspicious nodules and differentiate between
benign and malignant nodules in thyroid ultrasound images.

Comparison of Outcome Metrics

The use of various evaluation metrics in these studies makes
it difficult to assess and compare the performance of the CAD
systems being presented. In these studies, as depicted in Figure 2S in
supplementary data, the most popular metrics are accuracy (n=35,
21%), sensitivity (n=34, 20%), specificity (n=34, 20%), area under the
curve (AUC) (n=23, 13%), PPV (n=18, 10%), NPV (n=18, 4011%),
and F score (n=8, 5%).

Dataset Comparison

The performance of research articles has been validated via
various datasets of different sizes and types, including local and public
datasets.

Table 4S and Figure 2 present statistical information about the
size and type of datasets included in the studies. The used dataset

consisted of a minimum of 134 images from a local source and a
maximum of 31888 images, which included both a local dataset and
a public dataset. In Figure 2, it is clear that only a small fraction (n:3,
4.4%) of the studies use public datasets, making it difficult to compare
their methods.

The public ultrasound thyroid datasets used in these papers are
the Thyroid Digital Image Database (TDID), provided by Pedraza et
al. [74], and an open-source dataset from the scientific community
[75]. Among the studies that used local datasets, (n=31, 68.9%)
utilized one dataset (one center), and (n=9, 20%) utilized two to four
datasets (multiple centers).

Image Preprocessing and Augmentation

Image preprocessing is a crucial step in medical image analysis.
It sets the foundation for accurate image interpretation and insight
extraction. This phase often includes detailed operations such as
cropping and resizing the region of interest (ROI), which are essential
for focusing the analysis on the most relevant aspects of the image
[29,32,36-38,44].

Fundamental to image preprocessing are processes such
as binarization, which effectively separates objects from their
backgrounds, and normalization, which is crucial for ensuring that
intensity values remain consistent across a dataset, facilitating more

reliable comparisons and evaluations [30,31,53].

In addition to these core techniques, various image filtering
methodologies, such as median filters [34] and bilateral filtering
[65], are used to reduce noise and enhance important features in
images, thus improving the clarity and usefulness of visual data.
Specialized preprocessing techniques, such as removing patient
identification details and any misleading markers (artifacts) from
nodules [45,64,66,68], improve image clarity, enabling more accurate
analysis and diagnosis. This is often complemented by additional
image enhancement techniques and advanced denoising strategies.
All of these techniques aim to improve the overall quality of the
images. Such comprehensive preprocessing efforts are critical, as
they significantly increase the reliability and accuracy of image-based
assessments across a multitude of applications. This informs decision-
making processes and enhances the efficacy of subsequent analyses
[68].

In addition to the initial processing steps, detection of the
region of interest (ROI) is conducted to identify and isolate the
relevant areas within the images. The images are subsequently
resized to standardized dimensions to ensure uniformity. A manual
cropping process is employed to format the images into a square
shape, facilitating consistency across the dataset and enhancing the
effectiveness of subsequent analysis [44,45]. The detection of regions
of interest (ROIs) enhances the accuracy of diagnostic assessments
by prioritizing specific areas within an image that warrant further
examination. Many studies have employed manual methodologies
[27,30,33,36,37,44,45,52-54,58,59,61]. These manual techniques,
while traditional, often require considerable time and are subject
to human error. This has prompted a shift toward more automated
approaches. In contrast, a few research endeavors have embraced
automated methods for detecting regions of interest (ROIs) [31,48,66].
With the continuous advancement of technology, there is a growing
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opportunity to improve manual techniques by integrating automated
solutions. This approach has the potential to increase the efficiency
and consistency of nodule detection.

Among modern techniques, deep learning models, such as
RetinaNet [32] and Faster R-CNN [42], which utilize cutting-edge
frameworks, have gained significant attention because of their ability
to enhance detection capabilities. In terms of segmentation, various
methodologies have emerged, including StableSeg [28], U-Net++
[47], U-Net [49], and deep learning-based segmentation approaches
such as SkaNet [67] and EfficientNet B6 [68].

Moreover, various tools and applications for detecting regions
of interest (ROIs) and facilitating their extraction and analysis are
discussed in the literature. One notable tool is ePADlite, which is a
semiautomated segmentation tool integrated within the Electronic
Physician Annotation Device [35]. Manual ROI tools such as ITK-
SNAP [38,50], MATLAB [51], and Image] software (version 1.48,
National Institutes of Health, USA) serve as alternative options for
researchers. Additionally, LabelMe software [65] is recognized for its
ability to facilitate precise annotation and segmentation tasks within
this dynamic field of study.

Medical image augmentation plays a vital role in overcoming
the challenges associated with limited medical image datasets.
Artificially expanding the volume and diversity of training data
through augmentation techniques such as rotation, flipping,
zooming, mirroring, shifting, scaling and adjusting brightness or
contrast [27,30,32,33,54,60] or adding Gaussian noise [30,33,45] can
significantly enhance the performance and robustness of machine
learning models.

Transfer learning has become a highly effective strategy for
addressing the challenges of insufficient medical imaging data and
improving generalizability across various applications. Several studies
have shown that using pretrained models significantly enhances
the performance of machine learning frameworks, providing a
strong starting point for tasks where data scarcity is a concern.
Many researchers in deep learning have specifically utilized various
architectures pretrained on ImageNet datasets, demonstrating the
adaptability of these models to medical imaging tasks [27-33,35-
37,44,54,55,60,65,66,68]. This not only increases the prediction
accuracy but also speeds up the training process, ultimately leading to
better clinical outcomes.

Compared with traditional machine learning methods,
contemporary deep learning methods tend to use image augmentation,
nodule detection, and segmentation techniques. The ratio of these
approaches used is illustrated in Figure 3.

Detailed Technical Comparison

Among the reviewed articles, two distinct approaches were
identified: traditional machine learning and deep learning
methodologies. Recent studies have shown that a variety of traditional
machine learning techniques have been used to analyze medical
images. Several articles have used XGBoost to improve the accuracy
of predicting and classifying ACR-TIRADS features. XGBoost is
an advanced machine learning algorithm that uses a decision tree-
based framework to efficiently process and analyze complex datasets,

thereby significantly improving diagnostic performance in thyroid
imaging assessments [39,50,52,62,75]. In several articles, researchers
have explored and compared multiple machine learning approaches
to identify the most effective method for specific applications. Some
frequently used techniques include support vector machines (SVMs),
artificial neural networks (ANNs), logistic regression (LR), K-nearest
neighbors (KNNs), and random forests (RFs) [30,34,39,45,46,52,5
9,61,62,69]. Through systematic evaluation, the goal is to select the
optimal algorithm that provides the best performance on the basis of
the data characteristics and desired outcomes.

Deep learning methods stand out from traditional machine
learning approaches, primarily because they rely on transfer learning,
especially in the medical imaging field, where labeled data are often
limited. As shown in the previous section, out of 19 studies that used
transfer learning, the majority (17 out of 19) employed architectures
that were pretrained on ImageNet.

This trend demonstrates the effectiveness of ImageNet as a
fundamental dataset, providing strong feature extraction capabilities
that improve performance across various tasks.

The detection and segmentation of nodules have become
important parts of deep learning frameworks. In their work,
researchers used StableSeg [27] because of its strong performance
in segmentation tasks, whereas Unet [49] and Unet++ [47] were
chosen for their excellent capabilities in segmenting biomedical
images. With respect to architecture, researchers have relied mainly
on previously developed methods to improve their models, including
ResNet50 [28,29,37,44,47,55,66], DenseNet121 [29,30,32,44,56,68],
InceptionV3 [30], MobileNetV2 [33,35], VGG16 [36], EfficientNetB7
[45], EfficientNetB3 [65], InceptionResNetV2 [60], and GoogleNet
[44].

In the machine learning literature, significant results were
reported by Vadhiraj et al. in [34]. They used a median filter and
image binarization techniques for effective image preprocessing and
segmentation. Additionally, they utilized the gray-level co-occurrence
matrix (GLCM) to extract seven relevant features from ultrasound
images.

The support vector machine (SVM) achieved impressive 96%
accuracy in classification, as reported by Gomes et al. [58]. In their
study, 27 morphological and geometric features were meticulously
extracted from images obtained from a publicly available U.S. thyroid
nodule image database. These features were then analyzed via an RF
classifier (REC), which achieved a remarkable classification accuracy
of 99.33%.

Yu et al. proposed an innovative fused deep learning model
for analyzing thyroid nodules. The model begins by extracting 33
clinically significant statistical features. After conducting principal
component analysis (PCA) for dimensionality reduction, the top four
features are integrated with the feature map generated by EfficientNet
B3 [65]. This approach achieved an impressive accuracy rate of 96.4%,
demonstrating its effectiveness in the given application.

Among the articles included, Figure 3S in supplementary data,
shows that the most commonly implemented TI-RADS guideline as
an artificial intelligence system is the ACR-TIRADS (n=29, 61.7%).
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This finding highlights the high effectiveness of this ultrasound risk
stratification system.

Challenges and Future Perspectives

In machine learning (ML) and deep learning (DL), many studies
face significant challenges due to inadequate and unbalanced datasets.
These issues are largely attributed to local data scarcity and improper
labeling of features by domain experts.

This issue is particularly pronounced in thyroid research, where
the availability of comprehensive datasets accompanied by reliable
ground truths and annotations is essential for enhancing model
accuracy and robustness. A notable gap exists in the representation
of benign and malignant cases across all risk levels of the TIRADS
classification [76], which is crucial for improving the generalizability
of Al models.

Additionally, collecting and accurately labeling thyroid nodules
is a time-consuming and costly process. It requires extensive
resources and specialized expertise to ensure the reliability and
representativeness of the training data. Poorly labeled or insufficient
data can lead to suboptimal AI outcomes, undermining the potential
advantages of using Al in the diagnosis and management of thyroid
conditions.

Furthermore, variability in image acquisition techniques such
as multimodal images can significantly influence training results,
whereas clinical decision-making often necessitates a comprehensive
evaluation, including video assessments, rather than relying solely on
isolated images.

Finally, we highlight important areas of future work for this line
of research as follows. As medical imaging advances, it is crucial to
create a comprehensive dataset from multiple centers. This dataset
should contain a diverse and balanced distribution of images
representing various levels of malignancy risk, along with an adequate
representation of benign samples. This is essential for the progress
of thyroid nodule classification. This dataset not only improves
classification accuracy but also includes scoring systems based on
international guidelines, such as the American College of Radiology
Thyroid Imaging, Reporting and Data System (ACR-TIRADS) and
its associated variants. This structured approach will be crucial in
developing advanced artificial intelligence (AI) models for medical
applications.

Cutting-edge image generation techniques such as generative
adversarial networks (GANs) can improve the quality of images used
to train Al systems in the medical imaging field. investigating the
effects of different techniques to address the performance challenges
associated with small datasets is necessary.

Moreover, the use of pretrained deep learning architectures
designed for medical image processing is essential for improving the
ability of AT systems to work with different types of medical images.

This initiative will focus not only on static images but also on
evaluations of both images and videos, which will greatly enhance
the decision-making capabilities of AI applications for analyzing
thyroid nodules. This comprehensive approach has the potential to
revolutionize the diagnostic process, providing more accurate and

dependable tools for clinicians and ultimately leading to better patient
outcomes.

Furthermore, the absence of uniform metrics for evaluating the
effectiveness of the suggested networks complicates result comparison.
Thus, it is essential to utilize standardized metrics for measuring and
contrasting the performance of various methods.

Conclusion

This article provides a comprehensive review of Al systems that
utilize the Thyroid Imaging Reporting and Data System (TIRADS)
for analyzing ultrasound images of thyroid nodules. This systematic
review is valuable for further research and encompasses articles
from reputable academic journals. The focus is on the design and
development of TIRADS guidelines via machine learning (ML)
methodologies, with the quality of the papers assessed on the
basis of specific criteria. Notably, deep learning (DL) techniques,
including transfer learning, have been widely adopted, using various
segmentation and classification methods at different levels of
complexity.

This review revealed that Al advancements have greatly improved
computer-aided diagnosis (CAD) systems for evaluating thyroid
nodules. However, the lack of comprehensive datasets, multimodal
images of thyroid nodules, and standard metrics for comparison
continues to hinder the progress of ML models. The results of our
study are expected to aid researchers and physicians who are keen on
Al-based CAD tools. This will be achieved by providing a summary
of the evidence to determine the current level of advancement and
guiding researchers in selecting appropriate methods for their future
investigations to improve their reliability and accuracy in diagnosing
thyroid-related conditions.

Data Availability

All data generated or analyzed during this study are included in
this published article and its supplementary information files.
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