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Abstract

Objective: To compare the performance of conventional and machine-
learning approaches for the diagnosis of tumor recurrence after radiation 
therapy of brain metastases.

Methods: 184 symptomatic patients with solitary metastatic brain lesions 
treated with radiation therapy were enrolled in a monocentric retrospective study 
from June 2013 to May 2018. The diagnosis was tumor recurrence (n=71) and 
radiation necrosis (n=113) using as reference standard expert-consensus derived 
from pathology and long-term follow-up. 37 potential predictors were recorded 
at the time of radiological progression (7-15 months after therapy): 6 clinical 
features and 31 imaging features including 20 radiomics features derived from 
standard of care 3D T1-gadolinium sequences. We compared four approaches 
(A, B, C, D): expert report using MRI sequences without (A) and with delayed-
contrast MRI (TRAM) sequences (B), 11 non-Radiomics imaging features alone 
(C) and a signature combining variables selected using unsupervised machine-
learning algorithms (D), training:validation sets: n=144:40 pts).

Results: Overall (n=184), approaches B and C (using TRAM sequence 
alone) reached comparable performances with respective AUCs [95% 
CI] of 78.7% [72.3%-85.1%] and 76.8% [70.3%-83.3%]. Both significantly 
outperformed approach A with AUC [95% CI] of 57.4% [50.7%-64.1%] (DeLong’s 
test, p-value=10-7). In the validation set (n=40), the signature reached an AUC 
[95% CI] of 92% [87%-97%].

Conclusion: A quantitative analysis of TRAM sequence seems the 
best approach for the diagnosis of recurrent tumor after radiation therapy. It 
is parsimonious, objective and less time-consuming than interpreting all 
sequences. A signature derived from the analysis of standard of care 3D T1-
gadolinium sequence showed promising results that warrant prospective 
validation.

Keywords: Radiation necrosis; Tumor progression; Brain lesion; Metastasis; 
MRI; TRAM

Introduction
Brain metastases are the most frequent brain tumors in adults and 

represent about 25% of brain masses [1,2]. Stereotactic Radiosurgery 
(SRS), a well-established treatment option, involves delivering a high 
dose of focal radiation to the tumor [3]. SRC provides increased local 
control and survival advantage compared to whole brain radiotherapy 
[2,4], but has a greater risk of Radiation Necrosis (RN), typically 
occurring months after the treatment [5]. Another major concern 
after treatment in Tumor Recurrence (TR). Distinguishing these two 
conditions is pivotal, as the treatment options differ markedly. While 
RN is mainly treated initially with dexamethasone and in persistent 
cases with bevacizumab [6,7], TR is treated with surgery, further 
radiation, or systemic therapy [3].

The main clinical challenge is that the accuracy of current tools 
for the diagnosis of TR and RN is limited. TR and RN have similar 
neurological signs and symptoms as well as relatively similar 
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appearance on imaging, with an enlarging enhancing region and 
increased vasogenic edema on post gadolinium T1-weighted magnetic 
resonance imaging (MRI) and T2-weighted FLAIR MRI, respectively 
[3]. In an effort to avoid invasive diagnostic techniques (such as 
biopsy), more sophisticated modalities such as perfusion MRI, MR 
spectroscopy, and Positron Emission Tomography (PET) have been 
studied to help distinguish RN and TR, but there is limited availability 
of those modalities compared to more conventional imaging methods 
such as contrast enhanced MRI [8-13]. Furthermore, none of these 
modalities offer sufficient sensitivity or specificity in clinical settings 
[14-16]. Hence, identifying reliable diagnostic parameters, preferably 
using routine MRI sequences to avoid more invasive procedures such 
as biopsy or isotopic examination, would benefit a great number of 
patients and physicians facing this challenge.

Considering the physiological differences between TR and RN, 
there might be subtle differences in texture appearance in medical 
images. Computational medical imaging, known as radiomics, involves 
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the analysis and translation of medical images into quantitative data 
[17], and could identify such potential differences. Promising studies 
have demonstrated quantifiable textural differences in gray levels and 
histogram-oriented gradients between RN and TR, which are not 
obvious to human observers; These include both local-level features 
(within a tumor niche) and global-level features (global composition 
of the region of interest) [18-21]. For instance, a T1/T2 mismatch in 
lesion margins has been correlated with RN [22]. Mesh-like diffuse 
enhancement and rim enhancement with feathery indistinct margins 
have been associated with RN, while TR was associated with focal 
solid nodules and solid uniform enhancement with distinct margins 
[23]. Analyzing differences between edges, as well as level and spot 
patterns within the lesions associated a soap bubble pattern with 
RN [24,25]. RN was associated with a diffuse pattern characterized 
by periventricular white matter changes, while TR was associated 
with hyper/hypo-intensities indicative of hemorrhagic changes on 
Gd-T1-w, T2-w, and FLAIR MR Modalities [24,26]. The importance 
of intensity normalization in cases of multi-scanner and multi-site 
acquisitions have been emphasized to normalize these quantitative 
features [27,28].

The objective of this study is to compare the performance of 
conventional and machine-learning approaches using quantitative 
imaging biomarkers alone or in combination (signature) for the 
diagnosis of tumor recurrence after radiation therapy of brain 
metastases. As an ancillary study, we assessed the feasibility of 
radiomic analysis of routine MR imaging sequences to identify 
computer-extracted texture differences between RN and TR.

Materials and Methods
Study design

Our aim was to compare the performance of conventional and 
machine-learning approaches using quantitative imaging biomarkers 
alone or in combination (signature) for the diagnosis of tumor 
recurrence after radiation therapy of brain metastases. As an ancillary 
study, we used a machine-learning algorithm to combine a subset of 
radiomic characteristics to build a model which best distinguished RN 
from TR. To this end, the algorithm was trained on a training cohort 
(as described below) and validated in a testing set. The ultimate goal 
of the study was to determine the best non-invasive MRI technique 
and sequence that can be used on routine MRI to distinguish RN 
from TR. Figure 1 shows a summary of the study design.

Approaches
We compared four approaches referred as A, B, C, and D: (A) 

expert report using conventional sequences (3D T1 gadolinium 
sequence, ADC, CBV); (B) expert report using conventional and 
delayed-contrast MRI (TRAM) sequences; (C) quantitative imaging 
biomarkers alone. (D) As an ancillary study, a signature was defined 
using an unsupervised machine-learning derived combination of 20 
additional radiomics features extracted from standard of care 3D T1 
gadolinium sequences.

Study population
184 symptomatic patient after 7-15 months from the end of 

radiotherapy for solitary metastatic brain lesions treated with 

Figure 1: Study Design.
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radiation therapy were enrolled in a monocentric retrospective 
study from June 2013 to May 2018. All MRI exams were performed 
at Gustave Roussy Cancer Campus (Villejuif, France). Patients were 
randomly assigned to a training set (n=144) and testing set (n=40). 

This study was approved by the local institutional review board 
and was in accordance with the declaration of Helsinki. We have sent 
a letter of information to the attention of patients and all patients 
were informed of their enrollment in the study, in compliance with 
the institutional and national guidelines. 

 Inclusion criteria were: (i) patients who initially responded to SRS 
(tumor shrinkage), (ii) but months later showed evidence of radiation 
necrosis or tumor recurrence. In all cases, standard clinical diagnostic 
MRI including T2-weighted FLAIR and T1-weighted pre-gadolinium 
MRI and T1-weighted post-gadolinium MRI (DOTAREM (acide 
gadotérique) guerbet villepinte France) were obtained in this order: an 
MRI of planning of the radiotherapy which corresponds to the MRI 
of the diagnosis of the metastasis, then an MRI of the reaugmentation 
of the contrast (suspicion of radionecrosis or progression) between 7 
to 15 months after SRS. 

Exclusion criteria were: (i) patients for whom the acquired MRI 
showed a significant movement artifact; (ii) patients who did not 
receive a gadolinium injection. 

The reference standard for the diagnosis of radiation necrosis 
was the consensus of experts using imaging and/or biopsy. The 
initial diagnosis of radiation necrosis or tumor recurrence was 
made clinically by a committee of experts (two neuro-oncologists, 3 
radiotherapists, 2 neurosurgeons). Final diagnosis was made either 
after 3 years of follow-up, using MRI and the clinical examination 
or PET MR choline and the clinical examination and findings (164 
patients), or using histopathological findings after surgical resection 
(20 patients).

Imaging parameters and variables
The MRI acquisition parameters were the same on all acquired 

MRIs (Table 1). Data included at least a contrast (gadoterate 
meglumine [Dotarem®, 0.1mmol/kg injections of gadolinium-based 
contrast agent]) enhanced three-dimensional T1-weighed Fast Spoiled 
Gradient Recalled (FSPGR) acquisition on 3 Tesla MR Scanners (MR 
750, Discovery; General Electric Healthcare). Imaging parameters 

were set as follows: repetition time: 10.2ms; echo time: 3.4ms; field of 
view, 22cm; voxel size: 0.8mm×0.8mm×1.2mm. Post-contrast 3DT1 
sequences only were used as inputs of the radiomics classifier.

Dynamic susceptibility MRI images were acquired using a first 
pass gadolinium contrast-enhanced T2*W echo-planar image 
sequence with 50 measurements. Each measurement ranged from 
1.5s to 2s long depending on number of slices. Continuous transverse 
slices throughout the brain were made with each measurement. The 
number of slices was dependent on patient size. The image acquisition 
parameters were as follows repetition time: average 2,008ms (range: 
1,690-2,250), echo time: 62.4ms, flip angle: 90°, slice thickness: 
4mm with a 0.4mm skip; a matrix of 128 x 128 and a flip angle of 
90. A series of 40 multisection acquisitions was acquired at 0.2s 
interval, field of view: 140 or 150, number of excitations: 1, bolus of 
Paramagnetic contrast media, gadobenate dimeglumine (Dotarem®), 
at a dose of 0.1mmol/kg was injected contrast bolus at 5ml/s followed 
by 20ml saline flush at 3ml/s into the cephalic vein catheter using an 
automatic power injector (medrad MR Injection System). A series of 
40 multisection acquisitions was acquired at 0.2s interval. The first 8 
acquisitions were performed before the contrast agent was injected 
to establish a pre-contrast baseline. Figure 2 shows representative 
images of an axial MRI of a brain lesion used in this study.

We recorded 17 variables including 6 clinical variables (age, 
primary tumor type, systemic immunotherapy treatment, symptom, 
surgery or no , final diagnosis) and 11 imaging biomarkers reported by 
the radiologist (edema, mismatch FLAIR/T1, ratioADC lesion/ADC 
control, ratioCBV corrected lesion/ CBV corrected control, ratioCBV 
corrected lesion/CBV corrected control , ratioCBV 95% percentile 
corrected lesion/CBV 95% percentile corrected control, rHP , PSR 
, radiological diagnostic hypothesis with all sequences without 
Delayed Contrast Extravasation MRI generate Treatment Response 
Assessment Maps (TRAM) , TRAM only, radiological diagnostic 
hypothesis with all sequences with TRAM). Imaging biomarkers 
were extracted from 4 MRI sequences: (i) First-pass perfusion or 
DSC-MRI and a Post-processing of DSC-MRI and DWI images were 
performed using the Olea MRI analysis software (Brain olea sphere®). 
The perfusion and diffusion plugin generates relative color perfusion 
MAP and ADC maps and the quantitative parameters are extracted as 
relative cerebral blood volume (rCBV), relative amplitude of the peak 
(rHP) and the percentage signal recovery (PSR); (ii) diffusion DWI; 

Figure 2: Axial MRI images of a brain lesion.
A) Irradiated frontal metastasis; Sequence 3D T1 with injection of gadolinium chelate; B) TRAM of subtraction between a sequence at 70min and early sequence; 
C) CBV mapping on a 3D morphological sequence. Finding an MRI tumor recurrence.
A 68-year-old patient followed for an encephalic localization irradiated in stereotactic radiotherapy.
Imaging performed 13 months after irradiation revealed left parasagittal contrast associated with perilesional oedema showing washout on TRAM sequence (blue) 
and hyperperfusion on CBV mapping suggestive of tumor evolution (recurrence). 
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(iii) three-dimensional T1-weighted post-gadolinium (T1 ce w+) (iv) 
delayed-contrast MRI (TRAM) and (iv) extraction features radiomics 
with T1 ce w+ acquisition.

Image analysis
Pre-processing: MR images preprocessing included bias 

field correction using the N4ITK algorithm from the Advanced 
Normalization Tools (ANTs) library [29], skull-stripping with the 
Brain Extraction Tool (BET) of the FSL software (FMRIB’s Software 
Library) [30] and Z-score normalization with a scaling factor of 100. 
No spatial resampling was performed due to data homogeneity.

Tumor segmentation: Segmentation of the volume of interest, 
including the contrast-enhanced and necrotic regions, was 
performed semi-automatically using Olea SphereÒ (Olea Medical). 
Within a region of interest defined by a trained radiologist (5 year 
of experience), threshold-based grey level contouring and manual 
correction were used for the segmentation so that the volume of 
interest was carefully drawn along the tumor enhancement.

Feature extraction
A total of 100 radiomics features were extracted using the 

Pyradiomics (version 2.1.2) package [31]. An absolute discretization 
with a bin size of 64 was chosen. Six features classes were considered: 
18 first-order statistics, 14 shape-based features, 22 Grey Level Co-
occurrence Matrix features (GLCM), 16 Grey Level Run Length 
Matrix features (GLRLM), 16 Grey Level Size Zone Matrix features 
(GLSZM), and 14 Grey Level Dependence Matrix features (GLDM). 
Using principal component analysis, 20 uncorrelated imaging 
features were generated by using these 100 features and used for 
subsequent analysis.

Model building
In the training set, the machine-learning classifier reaching the 

highest performance, or the prediction of the diagnosis was selected 
as the radiomics signature. The establishment of the classification 
model was based on the scikit-learn library version 0.20.3 [32], 
which included two steps applied to the training set: (1) selection 
of the machine-learning (ML) classifier and feature scaling method 
and (2) optimization of the remaining hyper-parameters. In (1), a 
nested cross-validation was used given the moderately-sized dataset 
and 135ML models combining 9 feature scaling methods (no scaler, 
Standard Scaler, Min Max Scaler, Max Abs Scaler, Robust Scaler, 
Quantile Transformer-normal, Quantile Transformer-uniform, 
Power Transformer-yeo-johnson, Normalizer) and 15 classifiers 
(Logistic regression, Quadratic Discriminant Analysis, Adaboost, 
Bagging, Extra Trees, Decision Tree, Gradient Boosting, Random 

Forest, Extra Tree, Ridge, SGD, BernouilliNB, GaussianNB, 
KNeighbors, MLP) were compared. The nested cross-validation 
considered a 5-fold cross-validation in the inner loop for hyper-
parameters tuning and a 5-fold cross-validation in the outer loop for 
the model performance evaluation. In step (2), only the combined 
model showing the lowest generalization error was kept and a ten 
repeated 5-fold cross-validation was performed. In this second step, 
a grid search method was implemented to optimize the remaining 
hyper parameters. Mean sensitivity, specificity, accuracy, and area 
under the receiver operating characteristic curve (AUC) and their 
associated standard deviations were calculated as performance 
metrics.

Evaluation of the independent test set and comparison to 
human performance

All cases and associated clinical reports were reviewed by a 
certified neuroradiologist (A.S) with 10 years of experience, who 
was blinded to the final histopathological interpretation and the final 
diagnosis. The interpretation of the expert was then compared with 
that of the radiomics signature.

The performance of each sequence was evaluated (ADC alone, 
CBV alone, mismatch T2flair/T1, TRAM) and the performance of the 
radiologist was calculated without TRAM (the case in all centers) and 
with TRAM (the case of reading at Gustave roussy).

To ensure that comparison between the performances 
of radiomics and the expert mimicked clinical conditions, 
neuroradiologists analyzed all available sequences of the imaging 
exam as done in clinical routine (post-contrast 3DT1 sequences and 
the other sequences acquired).

Statistical Analysis
Statistical analysis was performed using R software (version 

3.6.2). Sensitivity, specificity, accuracy and AUC were used to assess 
the diagnosis performances of the radiomics model. A MacNemar test 
(p-value level of significance 0.05) was used to assess the differences 
between the diagnostic performances of the radiomics classifier and 
of the readers at each step of the image analysis described above. 
AUCs were compared using DeLong’s test for two correlated ROC 
curves.

Results
Characteristics of the study population are displayed in Table 2

Expert using conventional sequences
In the overall population (n=184), the performance of experts 

was AUC [95% CI] of (57.4% [50.7%-64.1%]).

Discovery MR750w 3T Name of the sequence Type of the sequence TR TE Cutting 
Thickness

Installed in 2012, 70cm tunnel, 32 channels, 
50cm z-axis FOV, gradients 44mT/m SR 

200T/m/s.

T1 pre-contrast 3D rapid gradient echo 5.9ms 2.1ms 1mm

T2-Flair Turbo spin echo 7002ms 118ms 1mm

DWI EPI, two b-values (0 and 1000 mm2/s) 5375ms 62.6ms 3mm
DSC (Dynamic 

susceptibility MRI)
First pass gadolinium contrast-enhanced 

T2*W echo-planar image sequence
2,008ms (range: 

1,690-2,250) 62.4ms 4mm

T1 post-contrast - 3min 
after gadolium injection 3D rapid gradient echo 6.1ms 2.1ms 1mm

T1 post-contrast - 70min 
after gadolium injection 3D rapid gradient echo 6.1ms 2.1ms 1mm

Table 1: MRI parameters.
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Expert using conventional sequences and TRAM
The addition of TRAM sequence led to significant improvement 

(DeLong’s test, p-value = 7.5 10-8) in the performance of experts 
AUC [95CI] (78.7% [72.3%-85.1%]).

Quantitative imaging biomarker: quantitative 
measurement of imaging variables

The performance of the TRAM sequence alone was comparable 
to expert radiologists (AUC 76.8% [95% CI: 70.3%-83.3%]), hence 
comparable to approach B. TRAM significantly outperformed all 
sequences.

Signature 
In the training set (n=134), the performance of several models 

combining all available quantitative and qualitative imaging features 
quantifying morphological and metabolic characteristics was 
evaluated. There was minimal improvement in performance by using 
more than 3 variables, presumably due to the significant correlation 
between several pairs of variables (Figure 3, Supplementary Figure 1) 
as well as the excellent performance of TRAM alone. 

Using an unsupervised random forest algorithm, the machine-
learning algorithm ranked the most important variables for the 
diagnosis (Figure 4-6, Table 3 and Supplementary Figure 2-4). The 
performance of each variable included in the signature, as well as the 
optimal threshold, are displayed in Figure 4, 5 and 7. 

The final signature reaching the highest performance in the 
training set was obtained from a random forest using regression 
methods in 500 trees and evaluating 3 variables (TRAM, Component 
4, rHP) in each split.

In the validation set, the signature explained 38.24% of the 
variance with a mean of the squared residuals of 0.1436. The 
performance was AUC [95% CI] 92% [CI: 87%-97%] but needs to be 
validated prospectively.

The signature selected imaging biomarkers characterizing the 
texture and spatial heterogeneity of the lesion on T1w+ sequence that 
were not correlated with other known imaging biomarkers such as 
TRAM, ADC, CBV (entropy: AUC: 72.1% [95% CI: 64.5%-79.7%]; 
rRHP: AUC: 67.7; [95% CI: 59.3%-76.1%]).

Figure 3: Correlogram showing the correlation between imaging features.
This correlogram displays correlation between imaging features. The size of the circle shows the strength of the correlation. The color code is used to differentiate 
negative (red) and positive correlations (blue). Unsupervised clustering was used to regroup correlated variables. This shows that several imaging biomarkers are 
redundant and provide similar information. Of note, the referenced standard (i.e., diagnosis is tumor recurrence is strongly correlated with the TRAM sequence and 
the interpretation by a trained radiologist (rad_hypfinal_tram) as well as with the primary tumor type (NSCLC).
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Correlation between imaging features
The correlogram shows that several imaging features are 

providing redundant information (Figure 3, Supplementary Figure 
1, 3 and 4). For instance, the primary tumor type is also a predictor: 
a non-small cell lung cancer is associated with higher probability 
of tumor recurrence. The referenced standard (presence of tumor 
recurrence) is correlated with the TRAM and the interpretation by a 
trained radiologist. It shows that increase TRAM values are correlated 
with higher probability of tumor recurrence. 

The correlogram also shows that some radiomics features are not 

Figure 4: Unsupervised ranking of the most importance of variables by the random forest algorithm for the diagnosis of TR vs. RN. A) The plot shows the distribution 
of minimal depth among the trees of the forest. The mean of the distribution is marked by a vertical bar with a value label on it (the scale for it is dierent than for the 
rest of the plot), the scale of the X axis goes from zero to the maximum number of trees in which any variable was used for splitting. Intimal depth for a variable in a 
tree equals the depth of the node which splits on that variable and is the closest to the root of the tree. If it is low than a lot of observations are divided into groups 
on the basis of this variable. B) This plot summarizes the most important variables for distinguishing TR from RN, based on their performance.

providing an incremental value since they are significantly correlated 
with conventional imaging biomarkers. For instance, components 2 
and 12 are correlated with CBV. 

Of note, in the signature, the second most contributing imaging 
feature was component 4. Radiomics-derived component 4 was the 
second most contributive feature and was not correlated with any 
other known imaging biomarker (TRAM, ADC, and CBV). Hence, 
Component 4 is providing new information. Of note, Component 4 is 
derived from principal component analysis and the most contributive 
feature is GLCM features which is a texture feature.



Austin J Radiol 8(7): id1151 (2021)  - Page - 07

Dercle L Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Figure 5: Probability based upon a combination of variables prediction on 
a grid.
The plots below show predictions of the random forest depending on values 
of components of an interaction (the values of remaining predictors are 
sampled from their empirical distribution) for interactions that consist of two 
numerical variables.

Discussion
As a standard treatment for brain metastatic lesions, SRS 

provides superior likelihood of local control by providing focal high 

Characteristic Parameter and Value

Age (years)

Mean: 60

Median: 63

Min-Max: 25 - 84

Sex
Female: 81(44%)

Male: 103(66%)

Primary Tumor

Bronchial Tumor: 82(44%)

Melanoma: 49(26%)

Breast Carcinoma: 25(13%)

Papillary Thyroid Carcinoma: 9 (4%)

Ovarian Tumor: 6 (3%)

Clear Cell Kidney Cancer: 6 (3%)

Sarcoma: 5 (2.7%)

Others: 2 (1%)

Systemic Treatment
ICI (Immunochekpoint Inhibitor Therapy): 73(39%)

Chemotherapy or targeted therapy: 112(60%)

Final Diagnosis
Radionecrosis: 113 (61%)

Tumor Recurrence: 71 (38%)

Surgical Intervention
Yes: 20 (11%)

No: 164 (89%)

Table 2: Characteristics of the study participants.

dose radiation. The main complication of SRS, radiation-induced 
injury referred to as RN, can happen in up to 34% of the cases, up 
to several months following SRS [33,34]. Distinguishing RN with 
TR is challenging, considering the similarity of initial clinical and 
imaging manifestations. As both these conditions are associated 
with significant morbidity and mortality, and their treatments 
are fundamentally different, early diagnosis is of great clinical 
importance. Current methods of making the definitive diagnosis are 
histological findings and/or long term clinical follow up [13,14,35,36]. 
Histological confirmation necessitates a biopsy from the lesion, an 
invasive procedure which might not be the optimal choice for many 
patients. It also raises the problem of how representative the sample 
is. On the other hand, diagnosing with clinical and imaging follow up 
requires at least 4-9 months of observation, which significantly limits 
the opportunity for early treatment [13,14,35,36].

Currently available non-invasive options to distinguish RN and 
TR include metabolic imaging (MRS, PET, and SPECT) and functional 
imaging [37]; however, these techniques are of limited availability, 
are costly, and have not shown efficient sensitivity and specificity 
in clinical management [14-16]. In this study, we investigated the 
potential of using routine MRI sequence images in a radiomics model 
to distinguish RN from TP, compared the performance with that of 
an expert neuroradiologist, and analyzed the outcomes to propose the 
superior modality to make this differentiation. 

The presence of new contrast on MRI after irradiation of a 
malignant tumor raises the problem of differential diagnosis between 
RN and TP. Many criteria have been proposed in the literature 
based on morphological, functional or metabolic criteria [38]. In 
the follow-up of irradiated metastases, a transient and moderate 
increase in lesion volume is possible with a good prognosis. Lesion 
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Variable Mean Min Depth Number of Nodes MSE Increase Node Purity Increase Number of Trees Times a Root Top 5 Variables

ADC_control 7.6357 695 0.0006 0.5075 384 6

ADC_path 7.0384 770 0.0015 0.68 387 3

ADC_ratio 7.3215 774 0.0005 0.5862 393 5

CBV_95_control 6.1168 837 0.0023 0.9184 406 0

CBV_95_path 6.6225 782 0.0023 0.6773 395 6

CBV_95_ratio 7.6925 748 0.0007 0.4909 377 1

CBV_corr_control 7.1431 795 0.0012 0.5747 384 1

CBV_corr_path 6.7412 760 0.0041 0.837 396 19

CBV_corr_ratio 7.3548 750 0.0008 0.5808 396 4

CBV_noncorr_control 6.6435 770 0.0009 0.5721 396 0

CBV_noncorr_path 7.0247 754 0.0028 0.7459 391 20

CBV_noncorr_ratio 7.7233 689 0.0012 0.4901 372 5

Component_1 6.8889 794 0.0019 0.7116 400 6

Component_10 7.8153 699 -0.0008 0.4555 369 3

Component_11 6.1237 879 0.0008 1.0383 413 26

Component_12 6.1744 883 0.0013 0.9009 405 4

Component_13 7.1858 790 0.0007 0.6426 392 1

Component_14 6.9281 783 0.0002 0.7334 405 4

Component_15 7.3159 783 -0.0007 0.4148 399 3

Component_16 7.7355 750 0.0005 0.3661 393 3

Component_17 5.0396 1000 0.0035 1.5013 437 5 #5

Component_18 7.5963 712 -0.0002 0.3841 389 1

Component_19 4.5332 1058 0.0049 2.0053 451 11 #3

Component_2 6.0977 841 0.0035 1.1184 406 26

Component_20 6.9264 793 -0.0004 0.6299 403 4

Component_21 7.0859 772 -0.0001 0.6237 402 0

Component_3 6.9388 827 0.0014 0.6228 414 0

Component_4 3.6342 1054 0.0178 3.3027 446 83 #2

Component_5 7.2559 736 -0.0004 0.5101 392 9

Component_6 5.2944 969 0.0039 1.4261 437 4

Component_7 5.9822 922 0.0015 1.0073 419 0

Component_8 6.8205 794 0.0025 0.7218 402 3

Component_9 6.188 919 0.0012 0.917 429 6

IMMUNOTHERAPY 9.8602 373 0 0.0467 275 0

Melanoma 10.2863 316 0.0003 0.0405 241 0

NSCLC 9.6853 344 0.0008 0.2574 251 4

rRHP 4.5338 924 0.0168 2.4057 430 63 #4

tram 1.5796 617 0.1032 8.2278 471 161 #1

ADC_control 7.6357 695 0.0006 0.5075 384 6

Table 3: Description of all variables and top 5 important variables based on their performance.

morphological characteristics (volume, T2/T1 gadolinium ratio) 
and perfusion analysis, ADC and/or spectroscopy, TRAM plus and 
radiomics provide useful tools to approach the diagnosis of RN 
versus TP. We investigated different modalities and presented the 
best current tools to differentiate RN from TR based on our findings.

We found the TRAM sequence to be the best sequence for 

distinguishing RN from TP. TRAM sequence performance not 
only is superior to all conventional sequences currently in use, but 
also by utilizing the TRAM sequence, the radiologist’s performance 
increased significantly. Furthermore, TRAM sequence outperformed 
the radiologist utilizing all the other conventional sequences. TRAM 
sequence is calculated from delayed contrast MRI, and its advantage 
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Figure 6: Principal component analysis: top 5 components used to diagnose tumor progression vs. radiation necrosis.
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in differentiating radiation side effects versus persistent tumoral 
lesions has been shown in other tissues in recent studies. Peker et 
al. showed that TRAM sequence shows excellent sensitivity (96%) 
and positive predictive value (99%) in diagnosing radiation effects 
in lung cancer [39]. Guez et al. investigated the TRAM sequence in 
radiation-induced brain vascular malformations mimicking cancer, 
and reported that TRAM can effectively distinguish the radiation 
effects and active tumors [40]. In line with literature, our findings 
suggest that TRAM sequence can be implemented clinically to 
significantly increase the diagnosis power in distinguishing RN from 
TP, ultimately to help guide the treatment plan. 

The use of Radiomics and machine learning has shown that 
an imaging biomarker characterizing the texture and spatial 
heterogeneity of the lesion on a conventional T1 sequence allows 
to differentiate RN from TR with good performance (Component 
4). This parameter is not correlated with other imaging biomarkers 
and provides independent information. This is of great clinical 
importance, since it provides additional data to support the diagnosis, 
and guide the appropriate treatment. The combination of these 
parameters in a signature has generated satisfactory performances. 
A prospective validation is warranted to validate these findings, given 
the sample size of our study.

Our study had some limitations. This is a retrospective 
monocentric study which could limit the generalizability of the 
results. However, it was done in a referral oncology center, one of 

Figure 7: AUC of single imaging features.
Green: Only TRAM: AUC 76.8% (95%CI: 70.3%-83.3%); Threshold 0.50000 (binary); Specificity 92.7%; Sensitivity 60.9%. Purple: rRHP: AUC 67.7% (95%CI: 
59.3%-76.1%); Threshold 0.8516484; Specificity 62.7%; Sensitivity 70.3%. Blue: Radiologist without TRAM: AUC: 57.4% (95%CI: 50.7%-64.1%); Threshold: 
0.50000 (binary); Specificity: 83.6%; Sensitivity: 31.3%. Orange: Radiologist with TRAM: AUC 78.7% (95%CI: 72.3%-85.1%); Threshold 0.50000 (binary); 
Specificity 91.8%; Sensitivity 65.6%. Red: Component 4: AUC 72.1% (95%CI: 64.5%-79.7%); Threshold -0.882759; Specificity 60.0%; Sensitivity 78.1%

the largest radiotherapy departments in Europe, receiving patients 
from different backgrounds with a large volume of irradiated brain 
metastases, with a multidisciplinary team expert in post radiation 
aspects. There are very limited studies analyzing all the MRI sequences 
and parameters and our approach provides an original and novel 
concept in differentiating RN and TP, using MRI as a non-invasive 
method and optimizing it via machine learning.

Conclusion
We investigated the performance of MRI sequences in 

distinguishing RN from TP. We utilized multiple parameters 
extracted from these sequences, created a signature to optimize 
performance, and compared them together and with radiologist 
readings. The TRAM sequence is the best sequence for diagnosis 
of RN. Its performance is superior to all conventional sequences 
currently in use. The radiologist’s performance significantly increases 
by utilizing TRAM sequence as well. We found a new, independent 
imaging parameter (component 4) using radiomics and machine 
learning which can differentiate RN from TR with great performance. 
The combination of these parameters in a signature has generated 
satisfactory performances which could benefit from a prospective 
validation.
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