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Abstract

Prohibitins are ubiquitous and an evolutionary conserved protein family that 
is present in multiple cellular organelles including mitochondria in addition to 
the nucleus. The Prohibitins are involved in multiple cellular functions such as 
cellular differentiation, anti-proliferation, morphogenesis and play a major role in 
maintaining the functional integrity of the mitochondria. Our laboratory and other 
groups have performed experimental studies on the expression and distribution 
pattern of prohibitins in various reproductive tissues of different species, which 
are include mice, rats, pigs, humans and few lower vertebrates and invertebrates. 
Moreover, recent studies have shown that prohibitins are strongly associated 
with spermatogenesis, folliculogenesis and the functions of the accessory 
reproductive organs. In this brief review, we highlight experimental evidence that 
supports the conserved roles that the prohibitins play in reproductive physiology. 
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present across all organisms. Currently our understanding of the 
complex biology of the prohibitins in reproductive physiology is 
limited. However, our laboratory and other groups have performed 
a number of experimental studies on the expression and distribution 
pattern of PHB and REA in various reproductive tissues of different 
species. These studies are performed in mice, rats, pigs, humans 
and few lower vertebrates and invertebrates including the red 
crayfish Cherax quadricarinatus, Octopus tankahkeei, Chinese mitten 
crab  Eriocheir sinensis, Danio rerio,  Gallus gallus, Salmo salar,  and 
Bos taurus. Moreover, recent studies have shown that prohibitins 
are strongly associated with spermatogenesis, folliculogenesis and 
functions of the accessory reproductive organ. In this brief review, we 
highlight some of the experimental evidence supporting a conserved 
role for the prohibitins in reproductive physiology.

Prohibitins
In humans, the PHB gene (hPHB) spans ~11 kb with 7 exons 

and map to chromosome locus 17q21 [3]. The first exon and a small 
portion of the second exon comprise the 5’ untranslated region, 
whereas the largest exon, exon 7 contains ~700 bp of 3’ untranslated 
RNA. Several transcripts of the PHB gene are transcribed with 
varying lengths of 3’ untranslated region [4]. The longer transcripts 
are present at higher levels in proliferating tissues and cells [5]. The 
abundance of PHB mRNA is inversely related to markers of cellular 
proliferation in different cells and tissues [6-10]. Comparative 
genomic alignment studies have shown that the human and rat PHB 
genes are similar except for intron 2 and 3, which are ~1 kb larger 
in the rat gene [11]. The hPHB gene encodes ~30 kDa protein, also 
known as B-cell receptor associated protein-32 (BAP32) gene. PHB 
contains four highly conserved domains, namely, an N-terminal 
hydrophobic domain; a PHB domain (amino acid residues 26-187) 
encoded by exon 3, 4 and 5, and which is conserved from protozoa 
to mammals; a coiled-coil (CC) alpha helices domain (amino acids 
residues 177–211) present at the C-terminal end of the protein, and 
encoded largely by exon 6; and a putative nuclear export sequence 
(amino acid residues 257 to 270) which present at the C-terminal. 

Introduction
 Sexual reproduction is a complex multistep hormonal dependent 

process where a male gamete, the spermatozoa, fertilizes a female 
gamete, the ova to form a zygote. In vertebrates, the formation 
of a mature ova and a sperm are through the process of ovarian 
folliculogenesis and spermetogenesis respectively under the control 
of endocrine factors including gonadotropins (follicle stimulating 
hormone, FSH and luteinizing hormone, LH). During these 
processes, multiple autocrine and paracrine factors, and steroid 
hormones play important roles as regulators of folliculogenesis and 
spermatogensis. The coordinated biosynthesis of steroids in the ovary 
and the testis are critical for progression of the reproductive cycle, 
successful ovulation and release of spermatozoa, and eventually 
fertilization and pregnancy. The binding of gonadotropins to 
specific membrane G-protein coupled receptors (GPCRs), leads to 
the activation of multiple signal transduction pathways, including 
the adenylate cyclase-/cAMP-dependent protein kinase A (PKA) 
pathway, mitogen-activated protein kinase (MAP kinase) signaling 
and calcium-/calmodul independent pathways that are known to 
be involved in the regulation of steroidogenesis and gametogenesis 
in vertebrates. Furthermore, multiple cross-talk among these signal 
transduction systems has been well documented. Interestingly, 
several other proteins are involved in the process of gametogenesis 
and interacting regulatory pathways.

Prohibitins are ubiquitous and evolutionary conserved protein 
family that belongs to the SPFH family which is characterized by 
the presence of the stomatin/prohibitin/flotillin/HflK/C (SPFH) 
domain (also known as the PHB domain). Members of this protein 
family include prohibitin (PHB/PHB1), repressor of estrogen activity 
(REA/PHB2), stomatins, plasma membrane proteins of  Escherichia 
coli (HflKC), flotillins, the human insulin receptor (HIR) proteins, 
the stomatin-like-proteins (SLPs), podocin and the erlins and 
plant defense proteins [1,2]. Based on extensive database analysis 
approximately 1800 PHB domain-containing proteins exist which 
includes 340 animal proteins and 142 mammalian proteins that are 
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The N-terminal hydrophobic domain is critical for its attachment 
to the mitochondrial inner membrane, whereas the CC-domain is 
important for protein–protein interactions. 

The human PHB2 (REA/hPHB2) [12], also referred as prohibitone 
[13]/B-cell receptor associated protein-37 (BAP37) [14] gene (PHB2) 
is located at chromosome 12p13 [15]. This gene has 10 exons, with 
smaller introns than PHB and spans ~5.3 kb. The REA/PHB2/BAP37 
gene encodes a protein of ~37 kDa. Similar to PHB structure, REA 
has a PHB domain, which is encoded by residues 39–201; a CC-
domain present at the C terminal end of the protein; a putative signal 
peptide (residues 1–36), and a putative nuclear localization signal 
peptide (residues 86–89). In eukaryotes PHB and PHB2 have highly 
conserved PHB domains. The PHB protein is 54% homologous with 
PHB2 [16,17] and has a single amino acid difference between rodents 
and humans [11]. Orthologues of the PHB gene have been identified 
in several organisms including bacteria [18,19], plants [20,21], 

Trypanosoma brucei [22], Saccharomyces cerevisiae (yeast) [23,24], 
Caenorhabditis elegans [25] and Drosophila [26]. 

Prohibitins and Reproduction 
Distinct differences in PHB and PHB2 (REA) levels have 

been observed during ovarian folliculogenesis, spermatogenesis, 
in mammary gland development, and in uterine tissue. 
Immunolocalization, Western blotting and immunogold staining of 
ovaries and testis had shown that both PHB and PHB2 (REA) are 
present in multiple cellular locations including mitochondria and 
nucleus, suggesting that they play additional roles in those cellular 
compartments. Due to complex post-translational modification 
and changes in cellular localization occurring during different 
physiological states, it has been difficult to identify the distinct 
roles that these prohibitins isoforms play in reproductive organs. 
Currently ours and other research groups are trying to understand 
the functional roles that the prohibitins play in reproduction by 

Year and 
References Critical findings

 [27] •	 Identified and characterized prohibitin (PHB) as an intracellular protein (p28 kDa) during differentiation of rat granulosa cells (GCs) 
isolated from preantral and early antral follicles.

[28]
•	 PHB was localized within rat GCs of infant and juvenile ovaries.
•	 A strong expression pattern of PHB in rat oocyte at all stages of follicular development, in rat corpus luteum and in follicles 

undergoing atresia.
 [29] •	 PHB roles were confirmed in mitochondrial structure and function during growth and differentiation of GCs.

[30] •	 PHB gene expression profiles were analyzed in normal and in carcinoma-induced female rat mammary gland.

[25] •	 Demonstrated the roles of prohibitin (PHB and REA) complex for Caenorhabditiselegans (C. elegans) embryonic development, and 
necessary for normal mitochondrial morphology and respiration.

[31] •	 GnRH dependent PHB expression is important for maturation of T lymphocytes and rat thymic growth.

 [32]

•	 PHB was immunolocalized in rat GCs, theca-interstitial cells, and the oocyte; and in porcine oocytes, zygotes, and blastocyst.
•	 Gonadotropin dependent PHB expression was inversely correlated to PCNA expression during follicular maturation and positively 

co-localized with P450scc.
•	 In atretic follicles, germinal vesicle-stage oocytes, zygotes, and blastocysts PHB was translocated from the cytoplasm to the 

nucleus.

 [33] •	 In human fundus, the expressions of repressor of estrogen receptor activity (REA) is reduced during labor, and suggest that REA 
gene is involved in regulatory pathways of estrogen receptor alpha (ERA) activity.

 [34] •	 REA is required for the maintenance of estrogen receptor (ER) activity and normal mammary gland development. The reduction or 
loss of REA function promotes over-activation of ER and increase breast cancer risk in humans.

[35-37]
•	 In rat GCs, mitochondrial PHB act through phospho-PHB (pPHB)-MEK-pERK pathway and regulates the Bcl/Bcl-xL which inhibit 

Bax-Bak expression. These events directly inhibit the release of cytochrome c from the inter-mitochondrial space and inhibit 
downstream activation of cleaved caspase 3.

 [38] •	 In rainbow trout (Oncorhynchusmykiss), a higher REA mRNA abundance in eggs inhibits development of embryo.

 [39]
•	 Demonstrated a novel mechanism for control of estrogen-induced luminal epithelial proliferation involving uterine endometrial 

stromal (ST) Krüppel-like factor 9 (KLF9) regulations of paracrine factor(s) to repress epithelial expression of co-repressor REA/
PHB2 in mice.

[40] •	 PHB was found to be an estrogen-regulated gene essential for uterine development and function in mice, and selectively required 
for estrogen-regulated gene expression in uterus.

[41] •	 Studies demonstrated that REA is essential for mammary gland development and has a gene dosage-dependent role in the 
regulation of stage-specific physiological functions of the mammary gland during pregnancy and lactation stages.

[42]

•	 In cloned placenta of domestic cat (Feliscatus), the expression of PHB and cathepsin D (CD) were correlated with the generation of 
reactive oxygen species (ROS), leading to decreased mitochondrial membrane potential and telomeric DNA, which are associated 
with cellular senescence and apoptosis.  The abnormal PHB protein patterns were associated with impaired development, and 
hence decreased fetal viability.

 [43] •	 REA expression was intense in both the perinuclear cytoplasm and the nucleus in GCs from follicles at all stages of development in 
bovine. However, REA expression was less intense in thecal tissue.

[44,45] •	 PHB was regulated by follicle stimulating hormone (FSH) in a follicular stage-dependent manner in vitro in pre-antral GCs isolated 
from diethylstilbestrol (DES) treated rats and antral GCs isolated from equine chorionic gonadotropin (eCG)-treated rats.

[46]
•	 REA physiologically restrained human endometrial stromal cell decidualization, controlling the timing and magnitude of 

decidualization to enable proper coordination of uterine differentiation with concurrent embryo development that is essential for 
implantation and optimal fertility.

[47] •	 The aberrant expression of glycolysis-related enzymes in human endometrioma tissue was associated with enhanced glycolytic 
metabolism. The malignant-like feature may be partially caused by low-expression of PHB gene in endometriotic stromal cells.

[48] •	 In humans, REA modulated crosstalk among multiple cell types in the uterine tissue and host background, serving as a brake on the 
estradiol-ER axis and restraining multiple aspects that contribute to the pathologic progression of endometriosis.

[49] •	 Folicle stimulating hormone (FSH)-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs.

Table 1: Prohibitins role in female reproduction.

http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
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utilizing conditional knock-out mice. We have highlighted a few 
important findings on the functional roles that PHB and REA play in 
reproductive physiology in Table 1 and 2. 

Conclusion
At present, we are just beginning to understand the critical roles 

that PHB and PHB2 (REA) play in ovarian, uterine, mammary gland, 
testis and accessory reproductive organ functions. Although current 
knowledge indicates that PHB and REA are involved in regulating 
the fate of folliculogenesis, spermatogenesis and other reproductive 
processes. A number of basic questions still remain to be answered. 
These include physiological role that PHB and PHB2 (REA) play 
in regulating gene expression and signaling in spermatogenesis, 
folliculogenesis, and the functions of the accessory reproductive 
organs. 
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