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Abstract

Synovial sarcoma is a tumor of multipotential or partly committed stem cell 
origin, as evidenced by its phenotypic, spatial and molecular heterogeneity. The 
SYT-SSX (SS18-SSX) fusion transcript characterizes this malignancy. This 
most frequently is either SYT-SSX1 (SS18-SSX1) or SYT-SSX2 (SS18-SSX2). 
Rarely a SYT-SSX4 (SS18-SSX4) fusion occurs. Gene expression analysis 
demonstrated that SYT-SSX2 upregulates mediators of developmental pathways 
including Wnt, Notch, TGFβ, hedgehog and fibroblast growth factor in human 
mesenchymal stem cells. In synovial sarcoma SYT-SSX2 also directly activates 
canonical Wnt/β-catenin signaling in preclinical studies. The Wnt signaling 
pathway is activated and the downstream effector β-catenin accumulates within 
the nucleus in 28% - 57% of clinical cases. In a potential therapeutic advance, 
a small molecule Wnt antagonist LGK-974 inhibits palmitoylation of Wnt by 
targeting the membrane bound acyltransferase Porcupine. Palmitoylation is 
a requirement for Wnt ligand availability. Potential future molecular treatment 
strategies include Wnt pathway antagonism, optimization of pathway inhibition 
by combinatorial therapeutics and integrating Wnt inhibition with other 
therapeutics such as fibroblast growth factor receptor inhibitors. 
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The fusion protein SS18-SSX is important for the initiation and 
progression of synovial sarcoma. Histologically synovial sarcomas 
are either of monophasic morphology consisting of spindle cells 
or biphasic morphology containing a mixture of spindle cells with 
cells of epithelial differentiation. Occasionally it may mimic other 
tumors. Differentiation of biphasic synovial sarcoma from biphasic 
mesothelioma is assisted by identifying mucicarmine-positive, 
hyaluronidase and diastase resistant mucin in synovial sarcomas, 
differential staining of calretinin, Ber-Ep4 and bcl-2 in mesothelioma 
and variation in expression of apoptotic stains [6]. A poorly 
differentiated variant of synovial sarcoma occurs rarely. Mutations 
in E-cadherin are a possible determinant of morphologic subtype of 
synovial sarcoma [7]. 

SS18-SSX epigenetically alters gene expression levels in synovial 
sarcoma by modifying chromatin structure through interaction with 
components of the Switch/Sucrose Non-Fermentable Complex (SWI/
SNF) and Polycomb. SWI/SNF is a nucleosome (a DNA segment 
wound around 8 histone protein cores) remodeling complex, which 
affects gene expression. It is mainly comprised of an aggregate of 
associated proteins products of the SWI and SNF gene families. 
Polycomb group proteins are a family of proteins that epigenetically 
silence genes by modifying chromatic remodeling. The fusion protein 
is antagonistic to SWI/SNF and Polycomb. 

Mechanisms of epigenetic modification include deregulated 
histone methylation, acetylation, and promoter methylation. In 
a comprehensive genome-wide analysis SS18-SSX was recruited 
in particular to sites modified by Polycomb that are enriched with 
trimethylated histone H3 on lysine 27 (H3K27me3) [8]. This usually 
increased or decreased gene expression levels. Hierarchical and 
functional clustering identified a cluster of neuronal genes densely 
covered by H3K27me3, which were upregulated. This substantiates 
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Synovial Sarcoma
Synovial sarcoma is a mesenchymal tumor that arises from 

multipotential stem cells [1,2]. This is consistent with spatial 
variation in tumor location and phenotypic heterogeneity. Tumor 
characteristics include both those of myogenic and neural progenitor/
precursor cells [3,4].The phenotypic plasticity and unlimited 
replicative potential of synovial sarcoma infers a multipotent 
mesenchymal stem cell of origin, a postulate supported by in-vitro 
experiments. A recurrent translocation involving chromosomes X 
and 18, t (X;18) (p11.2;q11.2) characterizes synovial sarcoma and 
leads to the formation of a fusion protein SS18-SSX identified in 
95% of cases. This fuses SS18 a transcriptional co-activator with one 
of 3 homologous transcriptional co-repressors (SSX1, SSX2, SSX4). 
In one third of synovial sarcomas SSX18-SSX is the sole cytogenetic 
abnormality [5]. 
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the concept of SS18-SSX2 reprogramming gene expression towards 
the neural lineage. As well as the reprograming of differentiation 
SS18-SSX2 activated selected signaling pathways that have roles in 
stem cell maintenance and fate allocation. This later group includes 
WNT/β-catenin signaling [9]. 

The Wnt pathway and therapeutic targets
Wnt signaling is an evolutionary conserved pathway that 

participates in embryonic lineage designation, tissue stem cell 
renewal and homeostasis. It is constitutively activated in numerous 
types of cancer including colorectal cancer [10,11]. Wnt ligands are 
glycoproteins rich in cytosine of which there are 19 different types 
in mammals. Wnt binding to its receptors Frizzled and LRP5/6 
causes disruption of the β-catenin degradation complex. Structural 
components of this destructive Axin-scaffold protein complex 
include APC, AXIN, glycogen synthase kinase 3 (GSK3β) and casein 
kinases 1 (CK1α, δ and ε) [12]. Casein kinase 1 phosphorylates 
β-catenin at serine 45. In usual circumstances Wnt ligand is absent 
and the degradation complex targets β–catenin for proteosomal 
degradation. In the alternative scenario, when Wnt ligand is present 
there is cytoplasmic accumulation of β-catenin with consequent 
nuclear translocation of β-catenin. This then complexes with LEF/
TCF and alters gene expression. 

Wnt ligands comprise 350-400 amino acids and are subject to 
lipid modification termed palmitoylation. Porcupine is a membrane 
bound O-acyltransferase that catalyzes acylation of a serine residue 
and subsequent post-translational palmitoylation of Wnt ligands. 
Most Wnt ligands are glycosylated and have lipid modification 
within the endoplasmic reticulum prior to transport to the Golgi 
apparatus [13]. Wnt ligand is palmitoylated prior to engagement 
with Wntless a chaperone molecule that facilitates Wnt’s progress 
through a secretory pathway. This involves transport from the trans-
Golgi network to the plasma membrane from which Wnt is secreted. 
Secreted Wnt ligand attaches to the Frizzled receptor. Therefore 
when palmitoylation is absent there is intracellular accumulation of 
Wnt and absent Wnt signaling. Porcupine is a founding member of 
a 16-gene family of membrane-bound acyltransferases with multiple 
membrane spanning regions. Two other members of the family also 
have protein substrates. These are Hhat, which modifies secreted 
hedgehog, and Goat that modifies ghrelin an appetite stimulating 
peptide. Wnt, Hedgehog, and ghrelin require fatty acyl modification 
for functional activity [14]. In a parallel scenario to inhibition of 
Porcupine and its effects on Wnt signaling, inhibitors of Hedgehog 
acyltransferase block hedgehog signaling [15]. 

Inhibitors of Wnt signaling include small molecule Wnt 
antagonists, that target palmitoylation of Porcupine e.g. LGK974, 
or stabilize Axin e.g. Tankyrase enzyme inhibitors. Wnt signaling 
can also be inhibited by a CK1α activator, SSTC-104 as illustrated 
in figure 1 [16]. These compounds are at varying stages of preclinical 
and clinical evaluation. Porcupine inhibition has a more favorable 
specificity profile that Tankyrase enzyme inhibitors in which 
intestinal toxicity is a frequent toxicity. In genetically modified models 
Wnt inhibition through overexpression of DKK1 or TCF4 loss, can 
also cause gut toxicity [17-20]. Intestinal Paneth cells provide Wnt 
signaling to gut epithelial stem cells and Wnt is required for intestinal 
tissue homeostasis [21-23]. In contrast the orally bioavailable selective 

inhibitor of Porcupine LGK974 is not detrimental to intestinal 
homoeostasis despite inhibiting Wnt signaling [24]. In one study it 
did not have a deleterious histologic effect on Wnt-dependent tissues 
in a rat MMTV-Wnt1 xenograft tumor model. Ultimately, LGK974 
can spare Wnt dependent tissues in mice and rats at efficacious anti-
tumor dosages and may be therapeutically useful in humans.

Targeting the Frizzled receptor such as using radiolabelled 
monoclonal antibodies is another therapeutic approach. In a separate 
consideration secreted frizzled related proteins 1-5 (SFRP’s 1-5) are 
a family of extracellular Wnt antagonists that binds to Wnt ligand 
or Frizzled receptors. These endogenous peptides have an anticancer 
role and SFRP expression is often epigenetically lost by gene promoter 
methylation in malignancy. Theoretically inhibition of excess Wnt 
signaling can be effected by restoration of SFRP expression. Histone 
Deacetylase (HDAC) inhibitors increase histone acetylation and 
increased gene expression. Epigenetic enhancement of tumor 
suppressor gene expression by HDAC inhibitors in synovial sarcoma 
is a recognized concept.

Wnt in sarcoma and synovial sarcoma
Fifty percent of human sarcomas of diverse histologic subtypes 

and 65% of cell lines have upregulated autocrine canonical Wnt 
signaling [25]. In some sarcomas Wnt antagonists such as FRP1, 
FRP2, FRP4, FRP5, DKK1 and DKK2 are epigenetically silenced and 
some sarcomas over express LRP5 and/or LRP6. Downregulation 
of Wnt pathway activity either in vivo or in vitro inhibits sarcoma 
cellular proliferation by downregulating CDC25A, a target gene of the 
β-catenin-TCF complex. In one study cell lines of different sarcoma 
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subtypes were evaluated for upregulated autocrine Wnt signaling. 
The assessment included two synovial sarcoma cell lines (A3243 and 
A2095). The A3243 cell line had increased levels of uncomplexed 
β-catenin and DDK1/FRP were inhibited. There was no up-regulation 
of uncomplexed β-catenin in the A2095 cell line. In a separate study 
Wnt signaling was evaluated in 57 NF-1 associated tumors (plexiform 
neurofibromas, dermal neurofibromas and malignant peripheral 
nerve sheath tumors-MPNST). Nine Wnt genes were significantly 
dysregulated in plexiform neurofibromas compared with dermal 
neurofibromas [26]. In MPNST biopsies and cell lines there was 
altered expression of twenty Wnt genes. 

Wnt signaling is activated in synovial sarcoma and β-catenin 
accumulates within the nucleus in 28% - 57% of cases [27]. In a 
published series of 49 synovial sarcomas β-catenin gene mutations 
occur in 8.2% and mutations of the mutation cluster region of the 
APC gene also occurred in 8.2% of cases [28]. In cell cultures of 
synovial sarcoma, tumor xenografts and a SYT-SSX2 transgenic 
mouse model it was demonstrated that SYT-SSX2 directly activates 
the canonical Wnt/β-catenin signaling pathway. This signaling is 
required for synovial sarcoma growth and inhibition of Wnt signaling 
by co-receptor blockade and small molecule CK1α activators arrested 
tumor growth [29]. SSTC-104 (Stemsynergy Therapeutics Inc., U.S.) 
was therapeutically effective in xenograft mice models injected with 
human synovial sarcoma tumor cells as well as in genetic mice models 
of synovial sarcoma. In conclusion SYT-SSX2 expression upregulates 
an autocrine WNT-β-catenin loop with proliferation being the 
primary cellular effect of Wnt activity. 

Wnt signaling is upregulated by inactivating gene 
mutations in other tumor types

Mutated gene products within signaling pathways other than 
synovial sarcoma are vicariously informative of up-regulated Wnt 
signaling in some tumor types. These include FAT1, NOTCH, LKB1 
and RNF43. The mutational status of the relevant genes in synovial 
sarcoma remains poorly characterized perhaps because of low 
tumor prevalence. Knowledge of the effect that pathways involving 
the proteins arising from these genes have on Wnt signaling may be 
useful in designing combinatorial therapeutic approaches to optimize 
Wnt inhibition. 

Mutational deactivation of FAT1 an associate member of the 
Hippo signaling pathway, promotes Wnt signaling. FAT1 deactivation 
occurs in glioblastoma multiforme (20.5%) as well as colorectal cancer 
(7.7%) and Head and Neck Squamous Cell Carcinoma (HNSCC) 
(6.7%) [30]. The central axis of the Hippo signaling pathway involves 
successive phosphorylation of MST1/2 followed by the LST1/2 
tumor suppressor gene products. This leads to phosphorylation and 
consequent nuclear exclusion of the co-transcriptional regulator YAP 
(YES associated protein) with decreased cellular proliferation and 
apoptosis. Soft tissue sarcomas arise spontaneously in 14% of murine 
models with homozygous loss of Lats1. Furthermore 83% of Lats1-

/- mice develop sarcomas secondary to carcinogenic treatment [31]. 
In alveolar rhabdomyosarcoma, the PAX3-FOXO1 fusion oncogene 
up-regulates RASSF4 [32]. This enhanced expression of RASSF4 
inhibits MST1 signaling to MOB1 another associate member of the 
Hippo pathway causing promotion of cellular senescence, cell cycle 
progression and tumorigenesis. Therefore the Hippo pathway is of 

emergent importance in the pathogenesis of sarcoma.

Interrogating other tumors, NOTCH deactivation in HNSCC up-
regulates Wnt signaling. The tumor suppressor gene product LKB1 
usually restrains activity of Frizzled and LKB1mutations occur in 
15-35%% of cases of non-small cell lung cancer and 20% of cervical 
cancers [14,33]. Lastly, RNF43 a trans-membrane ubiquitin ligase 
promotes turnover of Frizzled and is mutated in cystic pancreatic 
cancer [34,35]. 

Interacting networks in synovial sarcoma
Unsupervised gene expression analysis of 177 soft tissue sarcomas 

found that synovial sarcomas segregate along with other sarcoma 
subtypes into a cluster characterized by type specific genetic alterations 
[36]. Altered gene expression from developmentally important 
signaling pathways including FGFR, EGFR, Notch, Hedgehog, RAR, 
KIT and Wnt were characteristic discriminatory signatures within 
this group. Within synovial sarcomas in particular there were over 
4000 differentially expressed genes. These included members of the 
FGF receptor and EGF signaling systems. Altered expression of 
constituent member genes of the hedgehog-signaling system such as 
SMO and PTCH as well as BMP7, FOXM1 and CSNK1E was seen. 
Genes within the Notch signaling system including JAG1, NOTCH1 
and the transducer-like enhancer of split genes also had changes 
in expression levels. Overexpression of the Wnt signaling pathway 
was identified with overexpression of LEF1, AXIN2, TCF7, WISP2 
and the frizzled homologues. Altered expression of genes involved 
in remodeling chromatin including histones and SWI/SNF was also 
seen. An analogy has been made between committed hematopoietic 
progenitors reverting back to a stem-cell state in hematopoietic 
malignancies and sarcomas, a mesenchymal stem cell/progenitor 
disease recapitulating different soft tissue counterparts [37]. 

The Wnt pathway controls lineage designation by interacting with 
other pathways including the FGF pathway. This is of therapeutic 
interest as the FGF pathway promotes the growth of synovial 
sarcoma cells [9]. Inferences from the work of Barham conclude 
that WNT/β-catenin in synovial sarcoma is upstream of the FGF 
cascade. The expression of 22 FGF and 4 FGF receptors in 18 primary 
synovial sarcoma tumors and 5 cell lines was determined by reverse 
transcriptase-PCR in one study [38]. FGF2, FGF8, FGF9, FGF11, 
and FGF18 were commonly expressed. Several FGFs had growth 
stimulatory effects particularly FGF8 which stimulated growth in 
all evaluated cell lines. FGF signaling induced phosphorylation of 
ERK1/2 and p38MAPK. Inhibition of FGF signaling led to cell cycle 
arrest and growth inhibition in-vitro and in vivo in synovial sarcoma. 
This was accompanied by down-regulation of phosphorylated 
ERK1/2 and an ERK kinase inhibitor exhibited growth inhibitory 
effects. There was no down-regulation of p38MAPK with inhibition 
of FGF signaling. The other MAPK family member c-JUN is not 
phosphorylated by FGF signaling. Temporal and spatial embryonic 
co-expression of FGF8 and FGF18 is often observed [39]. FGF18 is 
mitogenic in colorectal carcinoma where its expression is upregulated 
by Wnt signaling [40]. FGF8 is often expressed in synovial sarcomas 
as previously mentioned. Selective inhibitors of ERK1 and ERK2 
include SCH772984, an ATP-competitive inhibitor, which may merit 
therapeutic evaluation in synovial sarcoma. Overall the interaction 
between Wnt signaling and FGF signaling is the best characterized of 
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targetable developmental pathways in synovial sarcoma.

In another interaction of developmental pathways of interest 
the genes Notch1, JAG1 and the Transducing-Like Enhancer (TLE) 
of split genes are differentially upregulated in synovial sarcoma. 
These TLE genes are transcriptional regulators, Notch targets and 
participate in embryogenesis. They co-operate with the Wnt/β-
catenin pathway in synovial sarcoma [41-43]. Overexpression of TLE1 
is a discriminatory marker of synovial sarcoma and is independent of 
gene fusion typeor degree of differentiation [44-46]. 

Future molecular therapeutic strategies
The U.S. National Cancer Institute has initiated a clinical trial, 

targeting the developmental pathways Hedgehog and Notch in 
sarcoma. This is of Vismodegib and the gamma-secretase/Notch 
signaling pathway inhibitor RO4929097 in patients with advanced/ 
metastatic sarcoma (NCT01154452). Adult synovial sarcoma 
was one of the inclusion conditions. In a separate development a 
phase Ia/Ib clinical trial evaluating the bio distribution, optimal 
recommended dose and safety of a radiolabelled monoclonal 
antibody that targets the Frizzled homologue 10 (SYNFRIZZ) has 
commenced (NCT01469975). The gene encoding frizzled homologue 
10 is overexpressed in synovial sarcoma whereas it is undetectable in 
normal tissue except the placenta. OTSA101 is a chimeric humanized 
monoclonal antibody against FZD10. Yttrium 90-radiolabelled 
OTSA101 has significant antitumor activity but non-radiolabelled 
OTSA101 has only weak antagonist activity. The study population 
comprises patients with refractory or relapsed non-resectable 
synovial sarcoma. 

Conclusion
The SYT-SSX2 fusion protein induces epigenetic gene (de) 

regulation [47]. WNT pathway activity is also aberrantly activated 
by SYT-SSX2. Accumulating evidence suggests that Wnt has a role 
in synovial sarcoma and inhibition of Porcupine is antagonistic to 
Wnt signaling. Early phase clinical trials of the Porcupine inhibitor, 
LGK974 have not commenced to date. However in future the 
therapeutic benefit of inhibiting Wnt signaling may be optimized 
by other strategies including using fibroblast growth factor receptor 
antagonists, which have previously been used in clinical trials for 
other tumor types.
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