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Abstract

In the recent years, two lymphotropic gamma herpesvirus, HHV8 and EBV 
have been identified as the causative agents of lymphoproliferative disorders 
and lymphomas, in complication with immunocompromised status due to 
the infection Human Immunodeficient Virus (HIV) or immune suppressing 
therapy after organ transplant. Some of the transforming and proliferation 
promoting genomic products coded by the two herpeviruses causes malignant 
transformation of the lymphocytes similar with the immortalization process to 
convert B cells into lymphoblastoid cell lines in culture. The two herpesviruses 
are associated with other malignancies than hematopoietic tumors. EBV 
and HHV 8 play a pathogenic role in the genesis of Kaposi’s sarcoma and 
leiomyesarcoma, respectively. This suggests that in immune deficient persons, 
opportunistic tumors other than lymphomas can be caused by the lymphotropic 
herpesviruses. 

Keywords: Herpesvirus; Human herpesvirus type 8 (HHV 8); Epstein-Barr 
virus(EBV); Acquired immune deficiency syndrome (AIDS); Lymphoproliferative 
disorder; Lymphoma; Post-transplant lymphoproliferative disorder (PTLD); 
Kaposi’s Sarcoma; Leiomyosarcoma

unique sequence present in more than 90 per cent of Kaposi’s Sarcoma 
(KS) obtained from patients with AIDS The sequence was not present 
in tissue DNA from non-AIDS patients, but also present in 15 % 
of non-KS tissue DNA sample from AIDS patients. The homologs 
of capsid and tegument protein genes of Gammaherpesvirinae, 
herpesvirus saimiri, and Epstein Barr virus (EBV) were found in the 
sequences, and it defines a new human herpesvirus [2].

Until the time of the discovery of the human herpesvirus, termed 
Kaposi’s Sarcoma Associated Herpesvirus (KSHV), or Human 
Herpesvirus Type 8 (HHV-8), seven human herpesviruses have been 
isolated, and they were classified as subgroups alpha, beta and gamma, 
with different spectrum of pathogenesis in the human hosts. Human 
cytomegalovirus, known as HHV-5 is fallen into the subgroup beta 
(the members are called beta-herpesviruses) together with HHV-
6 and HHV-7. HHV-6 is further classified as variants HHV-6A 
and -6B, according to the genomic variation [3]. But the existence 
of variant for HHV-7 was not evidenced [4]. The two viruses are 
characteristically T cell tropic and associated with a rash, exanthem 
subitum [5].  

Two gamma-herpesviruses, HHV-8 and EBV or HHV-4, 
manifest lymphotropism and they could establish persistent latency 
in host cells, their transforming genomic products engage multiple 
intracellular pathways signaling proliferation stimulation, prone to 
malignancy. 

In the case of HHV-8, the oncogenic genomic products also 
transform vascular endothelial cells in a less well defined mechanism, 
leading to a malignancy at the infection size called Kaposi’s sarcoma. 

Genomic products with pathogenic potential
KSHV/HHV8 genome contains 90 Open Reading Frames (OFRs)
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Introduction
To date, at least two human sarcomas have been identified to be 

associated with infection of lymphotropic herpesviruses, and they 
mostly occur in complication with immune compromise. The two 
sarcomas are Kaposi’s sarcoma and leiomyosarcoma.

Two major lymphotropic human gamma-herpesviruses, Kaposi’s 
Sarcoma Associated Herpesvirus (KSHV) or Human Herpesvirus 
Type 8 (HHV-8), and Epstein Barr virus (EBV) or HHV-4 cause 
lymphoproliferative disorders and sarcomas in immunocompromise 
hosts. The genesis of lymphomas may be attributed to the up-
regulation the viral genomic expression. In AIDS patients, the 
secondary lymphomas are Body Cavity Based Lymphoma (BCBL) 
and Primary Effusion Lymphoma (PEL), together with Multicentric 
Castleman Disease (MCD) [1]. EBV is the pathogen of the 
lymphomas in post-transplantation with reduced antiviral immunity, 
the compromised condition is also caused by infection of HIV. In 
immunocompromised individuals, infection of the two viruses is also 
associated with two distinctive types of sarcoma, Kaposi’s sarcoma, 
and leiomyosarcoma.   

HHV-8 and Kaposi’s sarcoma
Background: In 1994, Yuan Chang and collaborators identified a 
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[6], include functional proteins which modulates cell activities, to 
prolong the life span, support growth and proliferation and inhibit 
apoptosis, as so to facilitate the viral replication. The ORF K 50 within 
the genome of HHV-8 also codes for a protein which plays a role in 
the switch from latent to lytic replication. In vicinity of the OFR12 
coding for kaposin family, the transcripts of 12 HHV-8 microRNAs 
are generated. The alignment of the ORFs of HHV-8 genome is 
referred to Figure 1.

HHV-8 replication and transcription activator (Rta): On 
entering a permissive cell and establishing infection, HHV-8 
adopts latent and lytic replication. During latent infection, the 
virus maintains in nucleus as minichromosomes or integrates in 
the host chromosome and expresses latent gene products. Some of 
these products expressed by HHV-8 plays a role in the modulation 
of cell growth and proliferation, and hence contributes to the 
malignant transformation of HHV-8 harboring cells [8-12]. Like 
all herpesviruses, the latency can switch to lytic replication, when 
triggering by certain environmental factors like 2-tetradecanoyl-
phoborl-13-acetate (TPA). When the virus enters lytic cycle of 
replication, viral DNA is massively amplified, and progenitor virions 
are produced, and viral particles are released on the rupture and death 
of the infected cells. Some herpesviral proteins are responsible for the 
latent-lytic program switch. Regulator of Transcription Activation 
(Rta) molecules are expressed by EBV and HHV-8. The EBV encoded 
Rta, also called ZEBRA is the product of BZLF1 gene, and HHV-8 
Rta is generated by ORF50, whose expression is sufficient for the 
reactivation of HHV-8 [13,14], Rta transactivates the viral genes 
associated with lytic replication of cytokine production, together with 
its own promoter [15,16]. And it is required for the initiation of lytic 
DNA replication [17].

Latent proteins coded by viral genome: The genomic products 
expressed by HHV-8 virus have strikingly characteristics in mimicry 
or piracy of the human protein activities because its genome encodes 
for a number of homologs of biologically active cellular protein. 
The proteins include viral homolog of the angiogenic cytokine 
interleukin-6 (vLI-6), viral interferon regulatory factor 3 (vIRF3), 
a pro-survival protein which interferes interferon, an NF-kappaB 
activating viral FLICE/caspase-8 inhibitory protein (vFLIP), G1-S 
cell cycle promoter viral cyclin (v-cyclin), together with Latent 
Associated Nuclear Antigen (LANA), and Latency Associated 
Membrane Protein (LAMP), mitogenic signaling membrane protein, 
The proteins potentially support the proliferation of the host cells 

by promoting cell cycle progression and other relevant events. The 
genomic products are discussed in the order of the alignment of 
coding ORFs.

v-IL-6 and MIP-1 proteins encoded by ORF K2: A homolog of 
mammalian interleukin-6 (IL-6) and two homologues of macrophage 
inflammatory protein MIP-1 was identified in this locus [18]. The 
HHV-8 encoded IL-6 shares functional properties with human 
IL-6 proteins. And it is expressed during both latent and lytic 
replication. The v-IL6 is speculated to be implicated in the genesis 
of Kaposi’s sarcoma via angiogenic activity, and MIP-1 proteins may 
enhance pathogenic effects through the chemotactic recruitment of 
endogenous cytokine-producing cells into affected tissues. V-IL-6 is 
involved not only in the pathogenesis of Kaposi’s sarcoma but also 
in certain B-cell lymphomas and multicentric Castleman’s disease. It 
has conserved important features such as cysteine residues involved 
in disulfide bridging or an amino-terminal signal peptide. Most 
notably, the region involved in receptor binding is highly conserved 
in vIL-6 [19]. 

vIRF: Viral Interferon Regulatory Factor (vIRF) is encoded 
by ORF K9 in HHV-8 genome [20]. Antiviral response is initiated 
and amplified by interferon (IFN) induced by viral infection. The 
pleiotropic activity of IFNs includes tumor suppression through 
induction of negative cell growth regulator, and induction of 
apoptosis. vIRF coded by HHV-8 bears sequence similarity with 
IRF proteins, and all such proteins positively or negatively regulates 
IFN signaling. It has been reported that vIRF inhibits IFN signal 
transduction, downregulates Cyclin-Dependent Kinase (CDK) 
inhibitor p21, and transforms NIH3T3 cells [ 21]. 

LANA-2: The protein latency associated nuclear antigen 2 (LANA 
2) is encoded by ORFK 10.5. Its expression is B cell specific and not 
present in Kaposi’s sarcoma tissue. The coding genes ORF K9 and 
K10.5 appear to arise through gene duplication of a captured cellular 
IRF gene. LANA 2 is potent inhibitor of p53-induced transcription, 
and antagonizes p53-induced apoptosis [22].  

Kaposin, encoded by ORF K12: Kaposin is a type II membrane 
protein. Its abundance and ability to transform cells, suggests its 
potential role in KS pathogenesis [23]. kaposin expressing construct 
induced focal transformation in Rat3 cells when transfected to the cells. 
All the cells produced high-grade, highly vascular, undifferentiated 
sarcomas upon subcutaneous injection of athymic nu/nu mice [24]. 

V-FLIP: Encoded by K13, was initially thought to be an inhibitor 
of caspase-8 and because of its sequence homology to the prodomain 
of caspase 8/FLICE, and it was classified as viral FLICE inhibitory 
protein (vFLIP) [10]. But the subsequent work revealed that the K13 
protein does not act as a vFLIP and instead interact with IkappaB 
kinase (IKK) complex and activates the NFkappaB pathway [25,26]. 
Its transforming ability was demonstrated [23]. It was reported 
that K13/Myc double transgenic mice developed lymphoma in 
shorter latentcy, and the development of lymphoma in the mice was 
associated with elevated K13 level, and enhanced NFkappaB activity, 
and decrease in apoptosis [27]. 

v-GPCR: The coding product of ORF K14 is the most important 
intracellular signaling molecule that induces gene expression [28-31]. 
The viral G protein coupled receptor (v-GPCR) is the distant relative 
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Figure 1: Scheme of HHV-8 genome encoding genes (adapted from [7]; The 
arrows represent the known products coded by genome of HHV-8).



Sarcoma Res Int 1(1): id1004 (2014)  - Page - 03

Xiangning Zhang Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

of the IL-8 receptor, and displays a strong signaling activity in the 
absence of any known ligand, and considered to be constitutively 
active [28]. V-GPCR is expressed during the mid-lytic cycle, and the 
downstream gene of a biscitronic mRNA [31]. Its ectopic expression 
triggers growth deregulation in fibroblasts [30].  

v-cyclin D: Is the coding product of ORF 72, and is transcribed 
from the same promoter element as LANA encoded by ORF73 
[31]. Structurally, it is similar with the cellular D-type cyclins. It 
also associates with cellular Cyclin Dependent Kinase-6 (CDK-6) to 
form an active kinase complex. The kinase complex phosphorylates 
tumopr suppressor pRB as well as p27 KIP1, p21CIP1, and Bcl-2 
[32,33]. The complex may lead to a deregulated cell cycle progression 
and transformation [34,35]. 

LANA-1: Translational product of ORF 73. The viral protein 
is regarded as the functional homolog of Epstein-Barr virus 
determined nuclear protein 1 (EBNA-1), as it plays an essential 
role of maintenance of the viral episome in the infected cells. A 
strikingly difference of LANA-1 from EBNA-1 is that it also possesses 
transformation associated ability, some functions even resemble 
what exerted by transforming proteins of EBV like Latent Membrane 
Protein 1 (LMP1). It has been shown that LANA-1 associates with 
several cancer related proteins like Rb [11], p53 [12], and RING3 [36]. 

v-Bcl-2: known as KSbcl-2 was identified in the HHV-8 genome 
at an equivalent position and orientation to that of ORF16 in 
Herpesvirus Simplex (HVS). The overall amino acid sequence identity 
between KSbcl-2 and other Bcl-2 homologs is low (15-20%) but 
concentrated within the BH1 and BH2 regions. Its over-expression 
blocked apoptosis as efficiently as the known cellular anti-apoptptic 
Bcl-2 proteins. But it does not homodimerizes nor heterodimerizes 
with other Bcl-2 family members, suggesting that KSbcl-2 may have 
evolved to escape any negative regulatory effects of the cellular Bax 
and Bak proteins [37].

The progress on the characterization of the properties and 
biological activities of these proteins has provided insight into the 
potential mechanisms of HHV-8-induced neoplasia, including 
lymphoproliferative disorders, lymphomas, and Kaposi’s sarcoma. 
A combination of cell transformation mediated by latently expressed 
proteins that promote cell proliferation and survival coupled with 
paracrine signaling functions mediated by either the viral cytokines 
or viral receptor-induced secreted cellular proteins triggers the events 
leading to malignancy genesis. 

MicroRNAs encoded by HHV-8 genome: MicroRNA (miRNA) 
is a class of single strnaded small RNA of 22 nucleotide, which is 
matured from a large primary transcript, and a stem-loop pre-
miRNA [38,39].  Regulation of the biological events during the life 
cycle by the small RNA constitutes a great advantage for the parasitic 
viruses, because they do not elicit antiviral immune response like 
the viral proteins [40]. miRNAs are known to expressed by different 
viruses. EBER1 and ERBER2 encoded by EBV genome without 
any translational products were the earliest viral miRNA identified 
even before the notion of miRNA was proposed [41,42]. They are 
expressed abundantly in all EBV infected cells serving as indicator 
of EBV infection. HHV-8 encodes 12 miRNA [43-46]. The coding 
genes are clustered in vicinity of ORF K12 coding for kaposin 

family protein. They reside in the intron or coding region of large 
kaposin transcript, and target to certain cellular components. It has 
been shown that cell expressing HHV-8 miRNA are less sensitive to 
apoptosis induced by caspase-dependent and independent apoptosis 
induced by genotoxins [47]. HHV-8 encoding miR-K12-1, 3, and 
-4-3p regulate the activity of caspase-3, the effector of intrinsic and 
extrinsic apoptosis. Reports also suggested that HHV-8 encoding 
miRNAs regulate the maintenance of viral latency and inhibit lytic 
replication [48]. 

Viral association of the lymphoproliferative disorders
Primary Effusion Lymphoma (PEL) is a characteristic malignancy 

occurring in AIDS patients. The malignant cells are present in effusion 
of body cavities like peritoneal, pleural or cardial spaces without an 
obvious tumor mass. The lymphomatous cells have pleomorphic or 
anaplastic features. Most cases are of B cell origin, as indicated by the 
rearranged immunoglobulin locus or monotypic light chain pattern 
[49]. T cell type, HHV-8 associated PEL has been reported, with the 
diagnosis on basis of clonal rearrangement of T cell receptor perptide 
chain gene [50,51]. 

HHV-8 association of Kaposi’s sarcoma
Kaposi’s sarcoma was first described by a Hungarian dermatologist 

Moritz Kaposi in 1872, as a “idiopathic multiple pigmented sarcoma 
of the skin” [52,53]. The type or variant originally documented, 
known as classical variant today, is a relatively rare, slow-growing 
malignancy, mostly seen in middle-aged or elderly men. In 1981, a 
new variant which was eventually proved to be HIV associated form 
of Kaposi’s sarcoma was reported by Alvin Friedman-Kein [54]. 
HHV-8 infection in this type of Kaposi sarcoma was demonstrated 
in 1994 and the pathogenic role of the lymphotropic herpesvirus 
has been intensively studied, in connection with the biological 
activities of the viral genomic products in the subsequent years. 
Almost all the reported in the United States and other countries 
have occurred in homosexual and bisexual men [55], the epidemic 
or HHV-8 associated Kaposi’s sarcoma which tends to disseminate 
widely to mucous membranes and viscera is regarded as the most 
common neoplastic complication of AIDS. The third form of 
Kaposi’s sarcoma is immunosuppression associated. This type occurs 
in patients of organ transplant who received immune suppression 
therapy. Immune deficiency caused both HIV infection or iatrogenic 
immune suppression suggests Kaposi’s sarcoma an opportunity 
tumor attributed to imunocompromised status. The last type of KS is 
endemic, which is prevalent in some part of Africa. Kaposi’s sarcoma 
occurs in these patients with the fore-running AIDS episode. 

EBV and Leiomyosarcoma
Background

EBV has been shown to be the pathogen of a variety of 
human diseases. Biologically, it is distinctively characteristic 
with a host cell dependent latency pattern. In lymphomas arising 
in immunocompromised individuals, notably those occurring 
secondary to AIDS, it is evidenced that EBV may play a role. And 
the viral genome and/or genomic products have been detected in a 
considerable of the cases, including 80% of the central nervous system 
lymphoma [56], 70% immunoblastic lymphoma [57]. Major proteins 
with transforming potential are expressed, and the immunodominant 
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and also transforming viral proteins are expressed only in the host 
with reduced immunity. EBV encoding nuclear antigen, EBNA2, 
and Latent Membrane Protein 1(LMP1) which is transactivated by 
EBNA2 in the microenvironment of B cells play an essential role in 
the EBV mediated malignant transformation to convert the target 
cells into lymphoblastoid phenotype. The immortalized lymphocytes 
form large clumps due to the up-regulation of the adhesion molecules 
like Intercellular Adhesion Molecule1 (ICAM1), and CD23, LFA3 
[58,59] and anti-apoptotic molecules bcl-2 [58], mcl-1[60], and zinc 
finger A20 [61]. Other malignant related genes induced by EBV 
encoding genes, like Id1 (inhibitor of differentiation 1) [62] may 
also contribute to the genesis of tumors other than lymphoma, like 
meiomyosarcoma. 

In two neoplasms of epithelial origin, Nasopharyngeal 
Carcinoma (NPC) and EBV-associated gastric cancer, latency types 
with downregulated genomic expression are adopted. Transforming 
proteins, LMP1, LMP2A and 2B are expresed in NPC, and they engage 
intracellular signal pathways [63-66]. Recently, it has been shown that 
EBV acts as a regulator of genetic or epigenetic events rather than 
directly transforming effector in gastric cancer [67-70]. The latency 
pattern of EBV in leiomyosarcoma remains to be characterized, so as 
to understand the role of EBV in its genesis. 

The association of EBV infection with human malignancies 
prompts its utility as a therapeutic target. OriP as a viral regulatory 
element, for example, drives the expression of EBV encoding genes, it 
could be manipulated to control the expression of tumor suppressor 
genes and other cytotoxic factors, to achieve bitotherpeutical goal in 
EBV associated tumors [71]. 

EBV Genomic products with pathogenic potential
Zta/ZEBRA and latency/lytic cycle switch of EBV: Upon 

entry of EBV to the host B lymphocytes, the infected cells rapidly 
expand, analogous to the EBV immortalization of cultured B cells 
into Lymphoblastoid Cell Lines (LCLs). Lifelong EBV latency is 
established following an EBV specific Cytotoxic T Lymphcyte (CTL) 
response [72]. 

Like all herpesviruses, EBV adopts two distinctive forms of 
infection, latency and lytic replication. The activation of lytic cycle is 
evidenced by the presence of the virions in throat washing of healthy 
carriers, and plays an essential role in expansion of the EBV infected 
B cell compartment. It has been known that two intermediate early 
viral proteins, Zta/ ZEBRA, coded by BZLF1 ORF and replication 
and transcription activator (Rta) coded by BRLF1 are responsible for 
the switch from latent to lytic form of replication [73,74]. Zta and 
Rta are silenced during latent infection of EBV, but are activated by 
external stimuli like TPA [75,76] and a cascade of intracellular signal 
transduction is triggered [77,78].

Zta/ZEBRA which plays a role in switch to lytic cycle has been 
intensively studied. It is a DNA binding protein related to the basic(b) 
ZIP family of transcription factors which transactivates early, lytic-
phase viral promoter via Zta Responsive Element (ZRE) motif [79]. 
Zta protein contains a carboxyl-terminal domain that mediates 
homodimerization through a coiled-coil interaction, and a basic 
region which shares sequence homology with the DNA binding 
domain of members of AP-1 family of transcription factors [80-82]. 

It can therefore binds to TPA-responsive element or AP-1 sequence 
motifs with high affinity [83,84]. 

Two viral molecules, Zta and Rta have been shown to be 
indispensable for the induction of lytic cycle entry. But in view of 
that the process is completed by two factors, it raises the question 
whether one protein is sufficient in the switch. Recombinant EBV, 
like mini-EBV has been constructed to study the effect of individual 
gene product on cells [85]. LCL harboring such EBV with intact 
genome termed 2089, and that with deletion of BZLF1 ORF, 2809 
were co-cultivated with target epithelial cells. HONE-1 cells derived 
from nasopharyngeal carcinoma were infected with the two strains 
of recombinant EBV. We have found that BZLF1 mutant strain of 
EBV also possessed the ability to infect the target cells (Figure 2). The 
precise mechanism for the maintenance of the infectability of the 
BZLF1 deleted viral strain remains to be elucidated.

The role of genomic products expressed during viral 
latency in malignancy transformation mediated by EBV

EBV adopts different types of latency in different host ranges. In 
immune deficient individuals, all the genomic products, 6 nuclear 
proteins, EBNA 1-6 and three membrane integral proteins, latent 
membrane proteins 1 (LMP1), 2A (LMP2A) and 2B (LMP2B) are 
expressed. EBNA1 is a nuclear protein that maintains viral episomal 
status. It is expressed in all cells infected EBV. 

EBNA 1, with a molecular weight ranging from 90-110 kDa, 
depending on strain origin, is non-immunogenic. The property is 
attributed to the presence of a unique sequence, Gly-Ala repeat on 
its amino-terminus, which prevent the ligase catalytic ubiquitination, 
and thus it is unable to be cleaved to form epitopes by Antigen 
Processing Cells (APC) [86]. In the endemic region of nasopharyngeal 
carcinoma, a human cancer tightly associated with EBV infection, 
three EBNA1 subtypes, P-ala, V-thr and V-val have been detected 
from healthy carriers. Their effect on cell proliferation was examined. 
And V-val-EBNA1 was statistically higher than P-ala-EBNA1 in term 
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Figure 2: Infection of NPC derived HONE-l cells with LCL harboring wt 
recombinant EBV2089 (left) and mutant recombinant EBV with deletion of 
BZLF1, 2809(right) [85]. A. EGFP tag on virions; B. Nuclear counter stain with 
Propidium Iodide (PI); C. merge of EGFP and  PI signals. Data derived from 
at least two independent tests.
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of proliferation promotion. The type of EBNA1 with the functional 
advantage compared with prototype has been suggested [87]. 

EBNA2: EBNA 2-6 has been known as transforming viral 
protein, and in the recent years, publications have described their 
engagement in the intracellular pathways to stimulate growth and 
proliferation. Together with EBNA-5 or EBNA LP, it is the earliest 
expressed viral protein when B cells are infected with EBV [88]. 
Efficient immortalization of B lymphocytes requires the expression of 
genes of latency III program, including EBNA-2, which transactivates 
a number of viral proteins like oncogenic latent membrane protein 
1 (LMP1), LMP2, and induces a set of cellular genes, notably c-myc 
[89,90]. Transcription activation of EBNA2 is exerted by its association 
with a transcription factor, CBF1 (C promoter binding factor 1), and 
the transformation potential of EBNA-2 is mediated by the complex 
formation. CBF1 is also targeted by the intracellular domain of a 
protein Notch, formed on proteolytical cleavage. Notch proteins 
are a group of highly species conserved, membrane bound protein. 
Its structure suggests of the role in multistage animal development 
[91-94]. It has been shown that both Notch and EBNA-2activates a 
important subset of cellular genes associated with type III latency and 
B cell growth, while EBNA-2 more efficiently induces important viral 
genes, like LMP-1 coding BNLF1 [95]. The exploitation of Notch-
related signaling pathway may represent a key mechanism by which 
EBNA-2 contributes to EBV-induced cell immortalization. 

EBNA 3: Termed EBNA3A in an alternative nomenclature 
system. Similar with EBNA-2, and the oncogenic membrane integral 
protein LMP1, EBNA3 proteins, EBNA-3 and EBNA-6 are essential 
for transformation of B cells into Lymphoblastoid Cell Line (LCL) 
[96,97]. EBNA3 acts as cell cycle regulator, and also as transcription 
repressor in EBV infected cells with type III latency. A negative cell 
cycle regulator, p16 INK4A is epigenetically repressed by EBNA 3, 
cooperating with EBNA 6, hence facilitates the outgrowing of LCL. 
In the context, the senescence or Rb mediated cell cycle arrest is 
inhibited. Also similar with EBNA-2, EBNA-3 and -6 bind CBF1, 
and inhibit the EBV genes activation by EBNA-2. In addition, the 
repressive activity of EBNA proteins is exerted by they directly target 
to DNA. They interact with cellular factors like HDAC, and CtBP (c 
terminal binding protein) [99-101].  

EBNA4: Termed EBNA 3B. Masucci and collaborators have 
shown that population with high level of HLA locus A11 evade 
recognition by CTL specific for an immunodominant A11 restricted 
epitope derived from EBNA4 [102]. EBNA-4 coded by EBV as a 
human herpesvirus is less studied, and our knowledge mostly derived 
from the work on the rhesus lymphocryptovirus from a primate 
rhesus macaque. The EBNA 3 proteins, EBNA-3, 4 and 6 are expressed 
in immortalized B cells, and they may function as transcription 
regulators. Among these proteins, EBNA-3 and 6 are essential for cell 
immortalization, but EBNA-4 seems to be indispensable. In LCL with 
EBNA-4 null virus, a chemokine CXCR4 is upregulated, the result 
suggests that EBNA-4 regulation of CXCR 4 may be a viral strategy 
for alteration of B cell homing in the infected host [103].   

EBNA6: Alternatively termed EBNA3C EBNA-6 exerts 
transcription repression in collaboration with EBNA-3, through 
binding of the factor HDAC and CtBP [99-101]. EBNA 6 functions 
as a transcription regulator, and reports showed that it regulates 

cell cycle progression, as an oncoprotein which directs cell cycle 
progression through the G1 phase restriction point when conditions 
might signal arrest. And it is functionally but not necessarily 
mechanistically, similar to the pRb-neutralizing nuclear antigens 
encoded by the ‘small’ DNA tumor viruses. EBNA-6 can cooperate 
with activated (Ha-)ras in co-transfection assays to immortalize and 
transform Rat Embryo Fibroblasts (REFs). EBNA3C also augmented 
transformation by (Ha-)ras and a mutant p53 to a similar extent as 
human papilloma virus E7. As with E7 this effect was not inhibited by 
cotransfection with the Cyclin-Dependent Kinase Inhibitor (CDKI), 
a p16INK4A, which can normally activate the retinoblastoma protein 
(pRb) and induce growth arrest. Also like E7/ras and E1A/ras 
transformed cells the EBNA3C/ras transformants are very susceptible 
to apoptotic cell death [104]. It has also been shown that EBNA-6 
binds to a MRPS18-2 protein, and targets it to the nucleus. MRPS18-
2 binds to both hypo- and hyperphosphorylated forms of Rb protein 
specifically. This binding targets the small pocket of pRb, which is 
a site of interaction with E2F1. EBNA-6 may play a major role in 
the entry of EBV infected B cells into the S phase by binding to and 
raising the level of nuclear MRPS18-2, protein [105].

EBNA5: Alternatively called EBNA Leader Protein (LP). A 
number of cellular proteins have been discovered to bind EBNA 5. 
EBNA 5 is one of the earliest viral proteins expressed on infection 
of B cells by EBV. A nucleolar protein p14 ARF which regulates the 
p53 pathway is associated with EBNA 5. EBNA 5 also binds a partly 
nucleolar located protein, the v-fos transformation effector Fte-1 (Fte-
1/S3a), Fte-1/S3a has multiple biological functions. It enhances v-fos-
mediated cellular transformation and is part of the small ribosomal 
subunit. It also interacts with the transcriptional factor CHOP and 
poly(ADP-ribose) polymerase (PARP) which is cleaved by pro-
apoptotic protease when host cells undergoing apoptosis [106]. Fte-
1/S3a is regularly expressed at high levels in both tumors and cancer 
cell lines. Its high expression favors the maintenance of malignant 
phenotype and undifferentiated state, whereas its down-regulation 
is associated with cellular differentiation and growth arrest. EBV-
induced B cell transformation leads to the up-regulation of Fte-1/S3a. 
And the binding of EBNA-5 may influence the growth promoting, 
differentiation inhibiting, or apoptosis regulating functions of Fte-1/
S3a [107].

Latent membrane proteins (LMPs): The proteins include LMP1 
coded by fragment BNLF1 on the viral genome, and LMP2A and 2B 
coded by BNLF2. LMP1 is membrane integral with six transmembrane 
loops. It has a short N-terminal tail, but a C-terminal tail of more 
than 200 amino acid residues, harboring two Transformation Effector 
Sites (TESs). Both membrane proximal and distal TESs are capable 
of inducing NFkappaB, the hallmark of the biological activity of 
LMP1 [108] and the distal site also engages JNK, JAK/STAT, and Akt 
pathways. The association of TRAFs and TRADD defines LMP1 as a 
member of Tumor Necrosis Factor Receptor Superfamily (TNFRSF) 
[109,110]. LMP1 is recognized as a homolog of eukaryotic CD40, 
aggregated to form dimer on cells surface, without the triggering of 
an extracellular ligand, constantly transducing growth signaling for 
the host cell [111]. A panel of proliferation supporting, anti-apoptotic 
molecular are induced by LMP1 in an NFkappaB dependent 
manner, including bcl-2, bfl-1, mcl-1, and A20 [58-61]. LMP2A is a 
homolog of B cell receptor. It is membrane integral, and contains 12 
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transmembrane loops. LMP2A persistently emits growth signal for 
B cells. 

EBV association of the lymphoproliferative disorders
It is well known that EBV infection is associated with endemic 

Burkitt Lymphoma (BL), occurring primarily in individuals at 
childhood or early adolescence. Here we emphasize with the 
opportunistic lymphomas arising in immune deficient patients. 

AIDS-associated immunoblastic and primary central nervous 
system lymphomas: As lymphomas arising in AIDS patients, 
immunoblastic and Primary Nervous System (PNS) lymphomas are 
immunoblastic or large cell type, histophatologically intermediate 
or high grade [56,57]. The lesions are extra-nodal and unusual, and 
the type of lymphoma is characteristic of rapid progressing. EBV 
genome, present as monoclonal is detected in 90% primary central 
nervous system and 70% immunoblastic lymphomas in complication 
with AIDS. 

Post-transplant lymphoproliferative disorder/lymphoma: The 
type of disease occurs in patients with iatrogenic immune suppression 
due to administration of immunity inhibiting drugs after organ 
transplantation. The post-transplant lymphoproiliferative disorder 
and lymphoma are distinguished from Non-Hodgkin’s Lymphoma 
(NHL) in immune competent individuals by higher proportion 
of tumors with CNS presentation and by that the lymphoma is 
polyclonal immunophenotypically and genotypically. Genome 
of EBV is detectable from the clinical specimens, supporting the 
causative role of EBV. Monoclonal origin of the viral strain is revealed 
by study of molecular epidemiological study. More than 95% of the 
cases are positive for EBV genome and latent gene products [112]. 

The inability of the host immune system to control EBV infection 
may the driving force behind post-transplant lymphomagenesis. 
Persons without EBV infection prior to organ transplant have 
particular high risk of the lymphomas [113]. 

Mechanism and viral association of leiomyosarcoma
Leiomyosarcoma is a rare smooth muscle tumor occurring in 

uterus or gastrointestinal tract, accounting for 5-10% of all sarcomas. 
It is slightly more common in female. The cases in children are EBV 
associated, and these patients normally have iatrogenic, congenital, 
and AIDS-associated immunosuppression [114]. Its incidence is 
dramatically increased in immunocompromised children. EBV 
negative leiomeyosarcomas have been seen in women after renal 
transplantation, and immune competent individuals. McClain et al 
reported that in six HIV infected patients, five had leiomyosarcoma, 
and two had leimyoma. EBV genome existed in smooth muscle 
cells but not other cells in these patients. EBV receptor was strongly 
positive in these patients on immunostaining and the reactivity was 
elevated HIV positive patients [115].  

Conclusion
Two lymphotropic human herpesviruses, KSHV/HHV-8 and 

EBV have been intensively investigated in the recent years in regard 
with their basic biology and pathogenic activity. The latest work on 
HHV-8 mostly focused on the modulation of intracellular events 
like growth, proliferation and malignant transformation by hijacking 
host molecular activity, for example coding for cell cycle regulators, 

and synthesis of microRNAs. In immunocompromised host, HHV-
8 causes certain types of lymphoma, and a vascular proliferative 
disorder, Kaposi’s sarcoma. EBV is a ubiquitous human herpesvirus, 
its seroprevalence is high in the population. The virus adopts different 
latency in the individuals and immunodominant, and transforming 
genomic products are expressed in persons with immune suppression 
caused by administration of immune inhibitors on organ transplant, 
and infection of HIV. Expression of the transforming proteins leads 
to the occurrence of different types of opportunistic lymphomas, and, 
through complicated molecular interactions, a rare tumor on smooth 
muscle, leiomyosarcoma. 
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