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Abstract
Background: Soft tissue sarcomas account for roughly 80% of sarcoma 

cases and are often diagnosed late due to nonspecific symptoms, with 
median diagnostic delays of 4-6 months contributing to poor outcomes. We 
retrospectively evaluated an AI-driven clinical–genomic risk assessment tool on 
publicly available cohorts to assess its ability to flag sarcoma without reliance 
on symptom reporting.

Methods: We assembled 159 confirmed soft tissue sarcoma cases from 
TCGA and 300 non-sarcoma controls equally drawn from kidney, breast, and 
skin cancer cohorts. Clinical data were parsed from GDC clinical XML files and 
pathology reports; molecular data consisted of normalized RNA-seq counts 
from TCGA sarcoma samples and baseline normal tissue expression from 
GTEx. A proprietary ensemble algorithm fused structured clinical variables 
(demographics, laboratory values, tumor size and depth, pathology descriptors) 
with gene-expression thresholds tied to known sarcoma markers. Performance 
metrics—sensitivity, specificity, and overall accuracy—were computed on the 
combined cohort.

Results: The model correctly flagged 73 of 159 sarcoma cases (45.9% 
sensitivity) and produced zero false positives among 300 controls (100% 
specificity), yielding an overall accuracy of 78.9%. Detection spanned AJCC 
stages 0–4, with notable success in stages 1-2, demonstrating stage-spanning 
capability.

Key predictors included anatomical depth, tumor size, platelet count, and 
expression of proliferation-associated transcripts.

Conclusions: In this retrospective TCGA validation, the risk assessment 
tool achieved perfect specificity and moderate sensitivity for soft tissue sarcoma 
detection without symptom inputs. This performance profile indicates potential 
feasibility for clinical decision support applications where high confidence in 
positive flags is essential. Future work will extend validation to bone sarcomas 
via pediatric oncology partnerships and prospective clinical studies.
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Introduction
Soft tissue sarcomas (STS) comprise approximately 80% of all 

sarcoma presentations and pose significant diagnostic challenges due 
to their relative rarity and nonspecific early symptoms. With an annual 
incidence of approximately 13,500 cases in the United States and 
23,000 in Europe, STS represent less than 1% of all adult malignancies 
but account for disproportionate morbidity and mortality due to late-
stage diagnosis [1,2]. Median diagnostic delay from symptom onset to 
definitive diagnosis ranges from 4-6 months, with up to 25% of patients 
experiencing delays exceeding one year [3,4]. Five-year survival rates 
for localized disease (83%) drop precipitously for regional (54%) and 
distant metastatic disease (16%), underscoring the critical importance 
of early detection [5]. Traditional detection pathways rely heavily on 
symptomatic patients seeking care, followed by imaging studies and 
ultimately tissue diagnosis. However, early-stage STS often present 
with vague symptoms such as fatigue, mass effect, or nonspecific pain 

that may be attributed to more common conditions [6]. This diagnostic 
challenge is compounded by the rarity of STS, leading to lower 
clinical suspicion among primary care providers. Recent advances in 
artificial intelligence and multi-modal data integration present new 
opportunities for earlier detection. Prior studies have explored either 
structured electronic health record (EHR) data [7,8] or transcriptomic 
signatures alone [9,10], with moderate success. However, few have 
validated a combined clinical–genomic model on public cohorts or 
assessed feasibility for integration into clinical workflows. A study by 
Chen et al. demonstrated that integrated models outperformed single-
modality approaches in rare cancer detection, achieving 15-20% 
higher sensitivity at equivalent specificity levels [11]. We therefore 
performed a retrospective evaluation of our ensemble risk assessment 
tool on TCGA cohorts to gauge feasibility for early sarcoma detection. 
This study aims to address the hypothesis that integration of clinical 
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variables with genomic markers can identify STS cases across all 
stages without reliance on symptomatic presentation, potentially 
enabling earlier intervention through targeted workups of high-risk 
individuals.

Materials and Methods
Cohort Assembly

Soft Tissue Sarcoma Cases (n = 159): Confirmed adult TCGA-
SARC samples spanning multiple histological subtypes, including 
leiomyosarcoma (n = 53), dedifferentiated liposarcoma (n = 37), 
undifferentiated pleomorphic sarcoma (n = 31), myxofibrosarcoma (n 
= 17), synovial sarcoma (n = 10), and other subtypes (n = 11). Samples 
represented all AJCC stages (0-4).

Controls (n = 300): Equal subsets (n = 100 each) from TCGA-
KIRC+KIRP (kidney), TCGA-BRCA (breast), and TCGA-SKCM 
(skin melanoma). Control selection criteria included matched age 
distribution and data completeness for clinical variables.

Data Extraction and Processing

Clinical Variables: Extracted demographics, tumor size, anatomical 
depth, laboratory measures (CBC, metabolic panels), and pathology 
report descriptors via combined manual and automated parsing of 
GDC clinical XML and PDF files. Missing values (7.3% overall) were 
imputed using multiple imputation by chained equations.

•	 Molecular VariableSarcoma cases: Upper-quartile 
normalized, log₂-transformed RNA-seq counts from TCGA-SARC.

•	 Normal baseline: GTEx normal tissue expression 
for the same gene set to establish marker thresholds.

•	 Feature selection: Differential expression analysis 
identified 127 genes with significant expression changes in sarcoma 
versus matched normal tissues (FDR < 0.05, |log₂FC| > 1.5).

Model Framework

The risk assessment system employs a proprietary two-stage 
ensemble approach that combines clinical and genomic data streams:

Clinical Module: A gradient-boosted decision tree model processes 
approximately 50 structured clinical features, generating a continuous 
risk score. Features include demographic information, laboratory 
values, imaging characteristics (when available), and histopathological 
descriptors. The module was trained with regularization parameters 
to prevent overfitting.

Genomic Module: This component evaluates expression patterns 
of established sarcoma-associated genes, including proliferation 
markers, differentiation factors, and pathway modulators. A 
combination of continuous risk contributions and binary threshold-
based flags contributes to this module's output.

Meta-classifier Integration: A logistic regression meta-classifier 
fuses outputs from both modules to generate a final risk score. 
Calibration ensures high specificity by prioritizing precision over 
recall.

While specific implementation details and computational 
parameters remain proprietary, the general architecture follows 

established principles for clinical risk prediction models. The system 
operates without requiring symptom input data, focusing instead on 
objective clinical and molecular measurements.

Performance Evaluatio

•	 Sensitivity	 (True	 Positive	 Rate): Proportion of sarcoma 
cases flagged.

•	 Specificity	 (True	 Negative	 Rate): Proportion of controls 
unflagged.

•	 Overall	Accuracy: (TP + TN) / Total samples.

•	 Subgroup	 Analysis: Performance was evaluated across 
histological subtypes and AJCC stages.

All metrics were computed on the held-out cohort in a one-pass 
retrospective analysis. No post-hoc threshold adjustments were made 
to optimize performance metrics.

Results
Overall Performanc

•	 Sensitivity: 45.9% (73/159)

•	 Specificity:	100% (0/300)

•	 Accuracy: 78.9% (373/459)

Performance by Disease Stage

The model demonstrated stage-spanning detection capability, with 
positive flags distributed across all AJCC stages:

•	 Stage 0-1: 38.7% sensitivity (12/31)

•	 Stage 2: 47.2% sensitivity (25/53)

•	 Stage 3: 51.4% sensitivity (19/37)

•	 Stage 4: 44.7% sensitivity (17/38)

Notably, the model maintained performance across early stages, 
with comparable sensitivity for Stage 0-1 cases relative to more 
advanced disease.

Performance by Histological Subtype

Sensitivity varied across histological subtypes:

•	 Leiomyosarcoma: 52.8% (28/53),

•	 Dedifferentiated liposarcoma: 43.2% (16/37),

•	 Undifferentiated pleomorphic sarcoma: 48.4% (15/31),

•	 Myxofibrosarcoma: 41.2% (7/17),

•	 Synovial sarcoma: 30.0% (3/10),

•	 Other subtypes: 36.4% (4/11).

Feature Importance

Highest-impact features by mean contribution were:

1. Anatomical depth (deep vs. superficial),

2. Tumor size (maximum diameter),

3. Platelet count,
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4. Expression levels of proliferation-associated genes,

5. Neutrophil-to-lymphocyte ratio.

The combined model leveraged interactions between clinical and 
genomic features, with certain patterns showing synergistic effects 
that enhanced detection capability.

Discussion
Principal Findings

This retrospective study demonstrates that a combined clinical–
genomic AI tool can flag soft tissue sarcoma cases with perfect 
specificity (100%) and moderate sensitivity (45.9%), without relying 
on symptom reporting. The high specificity is particularly noteworthy, 
as it suggests the potential for this approach to enhance screening 
protocols without generating excessive false positives that could lead 
to unnecessary interventions.

The stage-spanning nature of detection, with comparable 
sensitivity across early and advanced disease, supports the tool's 
potential utility for early identification. By achieving 38.7% sensitivity 
for Stage 0-1 sarcomas, the model demonstrates promise for detecting 
disease before progression to later stages where outcomes are 
significantly poorer.

Comparison with Prior Work

Our findings compare favorably with previous studies in rare 
cancer detection. Ye et al. [12] reported 32% sensitivity at 98% 
specificity using clinical variables alone for sarcoma detection, while 
Zhang et al. [13] achieved 40% sensitivity at 94% specificity using 
genomic markers. Our improved performance metrics likely reflect 
the synergistic benefit of combining both data modalities in a single 
framework.

The perfect specificity achieved across multiple control cancer 
types is particularly notable, as it addresses a common limitation of 
previous cancer detection algorithms that often demonstrate lower 
specificity when tested against other malignancies versus healthy 
controls [14-20].

Clinical Implications and Feasibility Assessment

Potential	Clinical	Applications:

The risk assessment tool demonstrates characteristics that support 
potential clinical applications:

•	 Enrichment	of	diagnostic	pathways: The high specificity 
suggests utility in prioritizing patients for specialist referral and 
advanced imaging.

•	 Complementary	screening: For high-risk populations (e.g., 
individuals with hereditary syndromes predisposing to sarcoma), the 
tool could complement existing surveillance protocols.

•	 Decision	support	for	indeterminate	cases: The tool might 
provide additional context for ambiguous clinical or pathological 
presentations.

Implementation	Feasibility: 

Several factors influence the feasibility of clinical implementation:

1.	 Data	 availability: The model requires both clinical and 
molecular data, which may not be routinely collected in all settings. 
However, increasing adoption of molecular profiling in oncology may 
mitigate this limitation over time.

2.	 Workflow	 integration: The tool is designed to integrate 
with existing EHR systems through standard HL7 interfaces, requiring 
minimal workflow disruption.

3.	 Computational	requirements: Analysis can be performed 
within clinically relevant timeframes (<10 minutes) on standard 
computing infrastructure.

4.	 Regulatory	considerations: As a clinical decision support 
tool that does not make autonomous diagnostic determinations, the 
system may qualify for streamlined regulatory pathways.

Limitations

Several limitations merit consideration:

1.	 Retrospective	design: As a retrospective analysis of existing 
data, the study cannot directly assess the tool's impact on diagnostic 
timelines or patient outcomes.

2.	 TCGA	 cohort	 characteristics: TCGA samples may not 
fully represent the spectrum of disease encountered in routine clinical 
practice, particularly regarding early-stage or atypical presentations.

3.	 Missing	 data	 modalities: The current model does not 
incorporate radiological features or circulating biomarkers that might 
enhance performance.

4.	 Exclusion	 of	 bone	 sarcomas: The present study focused 
solely on soft tissue sarcomas, limiting generalizability to other 
sarcoma types.

5.	 Limited	 validation	 cohort	 diversity: While the control 
group included multiple cancer types, it did not include benign soft 
tissue tumors or inflammatory conditions that might mimic sarcoma.

Future Directions

Our research roadmap includes:

1. Expansion to bone sarcomas through partnerships with 
pediatric oncology centers,

2. Prospective validation in clinical settings with pre-
diagnostic samples,

3. Integration of radiological features through deep learning 
approaches,

4. Exploration of circulating biomarkers to enhance detection 
sensitivity,

5. Development of explainable AI components to support 
clinical decision-making.

Conclusions
Our clinical–genomic risk assessment tool achieved robust 

stage-spanning detection of soft tissue sarcoma in TCGA cohorts 
with perfect specificity, supporting its feasibility for clinical decision 
support workflows. The moderate sensitivity (45.9%) represents 
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a meaningful advance for a condition currently characterized 
by significant diagnostic delays and could be further enhanced 
through incorporation of additional data modalities. The tool's 
stage-independent performance suggests potential utility for earlier 
detection scenarios where current approaches are limited. These 
findings support advancement to prospective clinical validation 
studies.
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