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Abstract

This paper proposes a novel two-sample two-dimensional Kolmogorov-
Smirnov type test for the proportionality of intensity functions in case-control 
spatial point processes. The proposed test statistic is based on the absolute 
maximum deviation of proportions of points observed in a selected π-system. 
It shows that the asymptotic null distribution of the test statistic converges in 
distribution to a two-dimensional functional pinned Brownian sheet, which 
depends on both the true intensity functions and the shape of the region. 
However, by carefully selecting the π-system, the asymptotic null distribution 
may be reduced to the standard Brownian Bridge. Simulation studies show that 
the proposed test is effective in testing the proportionality in case-control spatial 
point processes. In an application of the West Nile virus study in Nebraska USA, 
the method shows that the proportionality between the case (i.e. positive to the 
virus) and the control (i.e. negative to the virus) is violated. 

Keywords: Case-control spatial point processes; Two-dimensional 
functional pinned Brownian sheet; Kolmogorov-Smirnov test; Proportionality

study for spatial point processes [2]. A proportional intensity model 
is derived if the proportionality holds.

In the literature for spatial epidemiology, the proportional 
intensity model is often used as a baseline assumption for model 
development. For instance, the spatial distribution of larynx cancer 
was compared to the spatial distribution of lung cancer around a 
prespecified location in the Chorley-Ribble area. The proportional 
intensity model was derived if the spatial distributions of the two 
cancers around the location were similar [3]. The proportional 
intensity model has been modified to suggest explanatory variables 
for the relationship between the two intensity functions [2]. In 
addition, a statistical model with clustering effects in the case process 
is also extended from the proportional intensity model [4]. A second-
order analysis approach to the proportional intensity model has been 
also considered [5].

Although it is a useful assumption, the proportionality in 
case-control spatial point processes may be questionable in real 
applications. We note that the comparison between two cumulative 
distribution functions based on the two-sample two-dimensional 
Kolmogorov-Smirnov (KS) test has been extensively studied in 
statistical literature [6]. However, little has been done for spatial point 
processes. In this article, we develop a spatial point process version of 
the popular two-sample two-dimensional KS test. Our test statistic is 
constructed in terms of the absolute maximum difference between the 
observed point proportions from the two processes. A nice property 
of the proposed method is that the asymptotic null distribution of 
the test statistic can be derived under only a few weak assumptions. 
To our best knowledge, this is the first official test that compares the 
intensity functions between two spatial point processes.

The remainder of the article is organized as follows. In Section 
2, we review the necessary background on the two-sample two-
dimensional KS test for cumulative distribution functions (CDFs). In 

Introduction
A fundamental problem in spatial epidemiology is the 

understanding of the relationship between risks experienced by 
humans or animals. A widely used method to address such a problem 
is to consider a case-control study for a certain risk [1]. In this 
research, we focus on problems of case-control studies for spatial 
point processes. In a case-control spatial point process model, data 
often consist of locations in a specific geographical region which 
can be classified into two categories: observations from the case 
process (composed of incidence locations of a particular disease) 
and observations from the control process (composed of incidence 
locations of other diseases). Typically, each observation in the case 
process presents a positive result to a certain medical test while each 
observation in the control process presents a negative one. A common 
task in the analysis of the case-control spatial point patterns is to 
compare their spatial distributions. For instance, in our data example 
of Section 5, we are interested in the comparison between the spatial 
distributions of dead birds on whether or not they were infected by 
West Nile virus. The main interest is to discover whether the spatial 
distribution of the case process (i.e. positive incidences) and the 
spatial distribution of the control process (i.e. negative incidences) 
are the same. The results of the analysis can provide potentially useful 
information on how the behavior of birds is affected by the infection 
of the West Nile virus.

To make the comparison, we study the relationship between the 
two spatial point processes by testing whether their intensity functions 
are proportional. A useful method to facilitate the comparison is to 
assume that both the case and control processes are inhomogeneous 
spatial Poisson processes. To compare their distributions, it is sufficient 
to simply analyze their intensity functions. If the distributions of the 
case and control processes are the same, then their intensity functions 
are proportional. This is called the proportionality of a case-control 
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Section 3, we propose our test for case-control spatial point processes. 
In Section 4, we present a simulation study to evaluate our testing 
method. In Section 5, we apply our testing method to the Nebraska 
West Nile data. In Section 6, we conclude this article with a discussion.

Two-Sample Two-dimensional KS Test for 
CDFs

The KS test was originally proposed for one-sample one-
dimensional continuous data [7] and later extended to one-sample 
multi-dimensional continuous data [8]. The aim of the one-sample KS 
test is to determine the distribution family of the observed data. Since 
it is often necessary to compare two distributions, the two-sample 
KS test is proposed [9]. This method is later extended to a multiple-
sample KS test for the comparison of multiple one-dimensional 
distributions [10]. The idea of the KS test for one-dimensional 
distributions has later been extended to multi-dimensional cases for 
the study of astronomical data, which includes the two-sample two-
dimensional KS test [11] as well as the two-sample multidimensional-
dimensional KS test [12].

Since the focus of this article is to develop a two-sample KS test for 
spatial point process data, we decide to only review the two-sample 
two-dimensional KS test. Although the KS test is one of the most 
important goodness of fit tests based on the empirical distribution 
functions of random samples, it has not yet been well extended to 
the multivariate case [13]. The problem is that the asymptotic null 
distribution of the test statistic is not distribution-free as in the 
univariate case. Although a method using a simple transformation 
to make the asymptotic null distribution distribution-free has been 
proposed [8], this method cannot be used in the two-sample two-
dimensional KS test since it involves the unknown true distribution 
of the observed data in the two-sample problem.

Let 1X  and 2X  be two independent random vectors with CDFs 
1F  and 

2F  on 2R , respectively, where 1F  and 2F  are unknown. A 
classical two-sample nonparametric testing problem considers the 
null hypothesis

	 2
0 1 2: ( ) ( ),H F x F x x= ∀ ∈

against the alternative hypothesis 

	 1 1 2: ( ) ( ),H F x F x≠  for some 2.x∈
This kind of problems arises when given an observed 1F  sample 

111 1,..., nX X  and an observed 2F  sample
221 2,..., nX X . It must 

be determined whether the two distributions are equal. The idea 
of the KS test is to compare the maximum difference between the 
empirical distributions of sampled data, where a significant difference 
is concluded if its value is large. Let the empirical distribution of 1F  
be 
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and the empirical distribution of 2F  be 
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where 
1 2, 1 2( ) ( , )x x xI y I y y=  with 1 2( , )x x x=  and 

1 2( , )y y y=  for 2,x y∈  is the indicator function on 2R  which 

equals one if 1 1y x≤  and 2 2y x≤  and zero otherwise. The two-
sample two-dimensional KS statistic, denoted by

1 2,n nK , for testing 
0H  against 1H  is defined as 

                                 

		        
sup 	                                    		  (1)

Where 1 2 1 2/ ( )n n n n+  is the standard term used to ensure that 
the statistic 

1 2,n nK  converges to a common limiting distribution? The 
asymptotic null distribution of 

1 2,n nK  is provided in the following 
proposition. 

Proposition 1
Let

111 1,..., nX X   and
221 2,..., nX X   be independently observed from 

1F  and 2F , respectively. Then under 1 2F F F= = , 

	    
		

max			         (2)

as 1 2K n n == ∧ min 1 2( , )n n →∞ , where ( )FW x  is the 
F-functional two-dimensional pinned Brownian sheet, which is a 
mean, zero Gaussian process on 2R  with the covariance function given 
by 

	                    				          (3)

                 where ' ' '
1 1 2 2( , )x x x x x x∧ = ∧ ∧  for 1 2( , )x x x=  and 

' ' '
1 2( , )x x x=  in 2

 . 

Proof: Clearly under 1 2F F F= =  we have 
1 21, 2,[ ( ) ( )] 0n nE F x F x∧ ∧− =  and 

                              

                             

                             Therefore, the covariance function of 
1 21 2 1 2 1, 2,/ ( )[ ( ) ( )]n nn n n n F x F x∧ ∧+ −  

is the same as the covariance function of ( )FW x  for 2x R∈ . To show 
the asymptotic distribution of 

1 2,n nK  given by (2), we need to use the 
basic theory of the empirical distribution, which includes Theorem 
19.4, Theorem 19.5, and the method for the Donsker condition 
given by Example 19.6 in [14]. First, we consider 

11 1,[ ( ) ( )]nn F x F x∧ −  
as 1n →∞ . According to the theory of the empirical distribution, it 
weakly converges to ( )FW x  as 1n →∞ . A similar conclusion also holds 
for 

22 2,[ ( ) ( )]nn F x F x
∧

−  as 2n →∞ . Note that these two expressions are 
independent. We conclude that 

1 21 2 1 2 1, 2,/ ( )[ ( ) ( )]n nn n n n F x F x∧ ∧+ −  weakly 
converges to ( )FW x  as 1 2min( , )n n →∞ . With the method given by 
Example 19.6 of [14], we can show that the Donsker condition holds 
in this case. Then, the conclusion given by (2) is drawn using Theorem 
19.5 of [14].

In Proposition, if F is the CDF of the uniform distribution 
on 2[0,1] , then FW  is called the two-dimensional standard 
pinned Brownian sheet, which is denoted by W(x) for 2[0,1]x∈
. It is clear that the covariance function of the W(x) is given by

' ' ' ' '
1 1 2 2 1 2 1 2[ ( ) ( )] ( )( ) ( )( )E W x W x x x x x x x x x= ∧ ∧ − , ' 2, [0,1]x x ∈ . 

To conduct the test, one can first directly compute the value of 
1 2,n nK  defined in (1) and then compare it with the upper tail critical 

values obtained from its limiting distribution given by (2). As neither 
the exact nor the approximate distribution of 2max ( )

Fx R
W x

∈
 is 

known, a Monte Carlo method is often used. Since the distribution of 
2max ( )

Fx R
W x

∈
 may depend on F, it is not easy to provide a general 

list of the critical values for the significance of
1 2,n nK . This issue will be 

1 2, 1 2 21n nK n n n n= + 2 1 21, 2, ,( ) ( )n nx R
F x F x∧ ∧

∈
−

1 2,
d
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
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' ' ' '[ ( ), ( )] [ ( ) ( )] ( ) ( ) ( ),F F F FCov W x W x E W x W x F x x F x F x= = ∧ −

2 1 21
2, 1, 2,1,[ ( ) ( ), ( ) ( )]n n nnCo F x F x F x F xυ

∧ ∧ ∧ ∧
′ ′− −

2 21
1, 1 2, 2,1,[ ( ), ( )] [ ( ), ( )]n n nnCo F x F x Co F x F xυ υ

∧ ∧ ∧ ∧
′ ′= +

1 2
1 1 2 2 1 2 1 2

1 2

[ ( , ) ( , ) ( , )].n n F x x x x F x x F x x
n n
+ ′ ′ ′ ′= ∧ ∧ −



Austin Stat 1(1): id1001 (2014)  - Page - 03

Tonglin Zhang Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

discussed later in Section 4. Using the simulation method, it can be 
shown that if F is the CDF of the uniform distribution on 2[0,1]  then 
the critical values at 1%, 5%, and 10% levels are approximately equal to 
1.8656, 1.6522, and 1.4937, respectively. However, this is not enough 
to carry out a general two-sample KS test for two-dimensional CDFs.

Method
Although much has been done for the comparison between two 

CDFs, there is little work developed for spatial point processes. In 
this section, we propose our method, which is modified from the two-
sample KS test, for the comparison between two independent spatial 
point processes. Since the most important issue in a spatial point 
process is its (first-order) intensity function, we decide to focus on 
the comparison between the intensity functions of two spatial point 
processes. If their intensity functions are proportional, then the two 
spatial point processes will have similar features which indicate that 
their distributions are affected by the same spatially varying factors. 
In this article, we consider the simplest case in such a problem: the 
comparison of intensity functions between the case point process and 
the control point process in a case-control study, where both case and 
control point processes can be modeled by inhomogeneous Poisson 
processes with unknown intensity functions [2].

Spatial point processes
The theory and concept of spatial point processes are well-

established, which are available in many textbooks [15-17]. Overall, a 
spatial point process is defined on a measurable subset in a completely 
separable metric space. Let the completely separable metric spaces be 

2
  and the measurable subset be S. Then, a spatial point process N 
is composed of points observed in S. Denote B(S) as the collection of 
all Borel sets of S. Let N(A) be the number of points in A∈B(S). Then, 
N(A) is finite if A is bounded. If N(A) and N(A’) are independent 
for any disjoint A and A’ in B(S), then N is called a spatial Poisson 
process. If N is a spatial Poisson process, then its distribution can be 
uniquely determined by its intensity function λ(s), which is defined 
by 

	

1 [ ( )]( ) ( ) 0
im

s
s

s

E N Us d U
U

λ = →
			   (4)

where SU  is a neighborhood of s∈S, SU is its Lebesgue 
measure, and ( )Sd U  represents the diameter of SU : 

( ) max{ ( , ) : , }S S Sd U d x y x U y U= ∈ ∈ for a distance function d. If N 
is a spatial Poisson process, then N(A) follows a Poisson distribution 
with mean ( ) ( )

A

A s dsµ λ= ∫ . Further in this section, we propose our 
methods based on a case-control spatial Poisson process, where both 
the case and the control processes are modeled by spatial Poisson 
processes.

The test statistic
Let 1N  and 2N  be two independent spatial Poisson processes 

on S with intensity function 1( )sλ  and 2 ( )sλ , respectively. 
Then, for any A∈B(S), 1( )N A

 
and 2 ( )N A  are independent Poisson 

random variables with mean functions 1 1( ) ( )
A

A s dsµ λ= ∫  and 2 2( ) ( )
A

A s dsµ λ= ∫ , 
respectively, where both 1( )sλ  and 2 ( )sλ  are positive and continuous. 
In this article, we focus on testing the null hypothesis of 

	 0 1 2: ( ) ( )H s sλ ωλ= 			   (5)

for some ω>0 against the alternative hypothesis of 

	 1 1 2: ( ) ( )H s sλ ωλ≠ 			   (6)

for any ω>0, where 0H  implies that 1( )sλ  and 2 ( )sλ  
are proportional and 1H  implies that 1( )sλ  and 2 ( )sλ  are not 
proportional. 

Note that 0H  can be interpreted as: there exists an ω>0 such that 
1 2[ ( )] [ ( )]E N A E N Aω=  for any A∈B(S) and 1H  can be interpreted as: 

there exists an A∈B(S) such that 1 2[ ( )] [ ( )]E N A E N Aω≠  for any ω>0. 
Let 

	 1 2( ) ( ) ( )D A N A N Aω ω= − .		  (7)

Then, for a given A, ( )D Aω is a function of ω. The null 
hypothesis is equivalent to that there exists an ω>0 such that 

	 ( )sup [ ( )] 0A B S E D Aω∈ = 			   (8)

and the alternative hypothesis is equivalent to that for any ω>0 

	 ( )sup [ ( )] 0.A B S E D Aω∈ > 		  (9)

Our test statistic is developed by considering the behavior of 
( )D Aω  for all A∈B(S). The basic idea of our approach is formulated 

in the following theorem.

Theorem 1 Let S⊆B(S) be a collection of Borel sets in S. If S is a 
π-system, i.e. S satisfies 1 2A A S∩ ∈  if 1 2,A A S∈ , then a necessary 
condition for Equation (7) to hold for all A∈B(S) is that there is an 
ω>0 such that [ ( )] 0E D Aω =  for any A∈S. In addition, if B(S) can be 
generated by S, then the condition is also sufficient. 

Proof: The necessity can be directly implied by Equation (7). 
We only need to show the sufficiency. Let ( ) [ ( )]v A E D Aω ω=
. Then, Dω is a signed measure for any ω>0. According to the 
Hahn Decomposition ([18], P 420), we can find s+  and s−  with 
s s φ+ −∩ =  and s s s+ −∪ =  such that vω  can be almost surely 
uniquely decomposed into v v vω ω ω

+ −= −  with ( ) ( ) ( )v A v A v Aω ω ω
+ −= −  

for any A∈B(S), where ( ) ( )v A v A Sω ω
+ += ∩  and ( )v v A Sω ω

− −= − ∩  
are two nonnegative σ-finite measures on S. Let 0ω  be the true value 
of ω such that ( ) 0v Aω =  for all A∈S. Then, 

0
vω

+ and 
0

vω
−  agree on S. 

According to the theorem of the π-λ system which says that if two 
measures agree on a π-system then they also agree on the σ-algebra 
of the π-system (e.g. Theorem 3.3 in [18], P 42), we conclude that 

0
vω

+  and 
0

vω
−  agree on σ(S)=B(S). This is enough to conclude the 

sufficiency.

It is clear from Theorem  that Equation (7) is only necessary to be 
considered in a special π-system S⊆B(S), which implies that we only 
need to consider 

	 sup [ ( )] 0.A S E D Aω∈ = 			   (10)

It can be seen from Theorem  that 0H  is rejected if Equation (10) 
is violated. However, if Equation (10) holds, then 0H  is accepted only 
when (S) can be generated by S. Note that under 0H  a straightforward 
estimator of ω is 

	 1

2

( ) .
( )

N S
N S

ω
∧

= 				    (11)

Then, 

	 1 2
1

1 2

( ) ( )( ) ( )[ ].
( ) ( )

N A N AD A N S
N S N Sω

∧ = −
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Using the above in (10), we derive our test statistic as 

	
1 2

1 2 1 2
1 2

( ) ( )( ) ( ) ( ) ( )sup ,
( ) ( )A S

N A N AT N S N S N S N S
N S N S∈= + −

		
						      (12)

where S is a collection of a π-system in B(S), and 0H  is rejected 
if T is large. The p-value of T can be derived from the distribution of 
the maximum of an F-functional pinned Brownian sheet, where the 
function F can be defined using the following theorem. The conditions 
in the asymptotics considered in the theorem can be interpreted as 
the expected number of points in the two processes, i.e. 1[ ( )]E N S and

2[ ( )]E N S , approaches infinity but the proportion of expected points 
in subregions of S does not vary.

Theorem 2 Let the π-system 

						      (13)

be generated by a measurable function G from S to 2[0,1] . Denote T 
as GT  if the π-system in T is given by GS . Define 1 1 1( ) ( ) / ( )XF X A Sµ µ=  
and 2 2 2( ) ( ) / ( )XF X A Sµ µ= . Assume for any 2x R∈  the two functions 

1( )F x  and 2 ( )F x  do not vary as 1 2min( [ ( )], [ ( )])k E N S E N S= →∞
. If there exists a positive ω such that 1 2( ) ( )s sλ ωλ=  (which is also

1 2F F F= = ), then 2 ( )[0,1]
sup W x

D
G x F

T
∈

  as k →∞ .
Proof: Note that the spatial Poisson processes 1N  and 2N  can be 

interpreted as points being independently observed from S with CDFs 
1F  and 2F , respectively. Then, 1 1 1 1( ) ( ) ( ( ), ( ))XN A N S Bin N S F x and
2 2 2 2( ) ( ) ( ( ), ( ))XN A N S Bin N S F x

. Denote 1 1[ ( )]k E N S= , 2 2[ ( )]k E N S=

and Ā as the complementary set of A. For any ' 2, [0,1]x x ∈ , define 

   and 

		         

Then, Z is an eight-dimensional independent Poisson random 
vector with the mean vector given by ν. According to the central limit 
theorem for independent Poisson random variables, we have 

	 1 2
1 2

( )( ) (0, ),d diag vk k Z v N
k k

+ −
+



and 1 2min( , )k k k= →∞. Let 1 2( ) ( ( ), ( ))th z h z h z= with 

1 1 2 1 2 3 4 5 6 5 6 7 8( ) ( ) / ( ) ( ) / ( )h z z z z z z z z z z z z z= + + + + − + + + +  and 

2 1 3 1 2 3 4 5 7 5 6 7 8( ) ( ) / ( ) ( ) / ( )h z z z z z z z z z z z z z= + + + + − + + + + , for 
8

1 8( ,..., )z z z R= ∈ . Then, 1 1 1 2 2( ) ( ) / ( ) ( ) / ( )X Xh Z N A N S N A N S= − ,
' '2 1 1 2 2( ) ( ) / ( ) ( ) / ( )

X X
h Z N A N S N A N S= −  , 1 1 2( ) ( ) ( )h v F x F x= − , and

' '
2 1 2( ) ( ) ( )h v F x F x= − . Let 1h⋅  and 2h⋅  be the gradients of 1h  and 2h

, respectively. Then, 

	

and 

If 1( )sλ  and 2 ( )sλ  are proportional, then 1 2( ) ( ) 0h v h v= =  and 
2

1 1 1 2

1 2 1 2
2 2

( ) ( ) ( )[1 ( )] ( ) ( ) ( )( )( ) .
( ) ( ) ( ) ( )[1 ( )]( ) ( )

t

h v h v F x F x F x x F x F xdiag v
F x x F x F x F x F xh v h v

κ κ
κ κ κ κ

    ′ ′ − ∧ − +    =      ′ ′ ′ ′∧ − −+       

 

 

Using the Delta Method with the expressions of the gradients of 
1( )h z  and 2 ( )h z  given above, we have 

1 1 2 21 2

1 1 2 21 2

( ) / ( ) ( ) / ( )
( ) / ( ) ( ) / ( )

x x

x x

N A N S N A N S
N A N S N A N S

κ κ
κ κ ′ ′

− 
 −+  

 			              0 ( )[1 ( )] ( ) ( ) ( )
( , )

0 ( ) ( ) ( ) ( )[1 ( )]

d F x F x F x x F x F x
N

F x x F x F x F x F x
′ ′− ∧ −   

→    ′ ′ ′ ′∧ − −   

as k →∞ . Since the above holds for any pair of
' 2, [0,1]x x ∈ , under 1 2F F F= =  the covariance function of 

1 1 2 2( ) / ( ) ( ) / ( )X XN A N S N A N S−  is the same as the covariance 
function of ( )FW x , which implies the conclusion of the theorem by 
the theory of empirical distributions that was already used in the 
proof of Proposition 1.

According to Theorem, the p-value of T can be approximately 
derived by the distribution of 2[0,1]

sup ( )Fx
W x

∈
. Since there is no closed 

form formula of such a distribution, a Monte Carlo method is used. 
This issue will be discussed in our simulation study in Section 4.

Practical guidelines
To calculate the test statistic T, it is important to choose the pre-

selected function G from S to 2[0,1]  to determine the π-system Gs . 
Generally, G is defined via a continuous bivariate function. Assume 
that proportionality holds and denote 1 2( ) ( ) ( )s s sλ λ λ= = . The 
basic idea can be derived by considering the special case in which S is 
a rectangular region given by S=[0,a]×[0,b] for a,b>0. In this case, a 
natural choice of G is 

	 1 2
, ( )a b

s sG s
ab

= 				    (14)

for 1 2( , ) [0, ] [0, ]s s s a b= ∈ × . The corresponding F-functional 
pinned Brownian sheet on 2[0,1]  is derived if we choose F as 

	                                     
1 2[0, ] [0, ] 2

, 1 2
[0, ] [0, ]

( )
( ) ( ) , ( , ) [0,1] ,

( )
x a x b

a b
a b

s ds
F x F x x x x

s ds

λ

λ
×

×

= = = ∈∫
∫ 		  (15)

which can be used to compute the p-value of 
,a bGT  using the 

distribution of 2 ,[0,1]
sup ( )

a bFx
W x

∈
. For an arbitrary region S in 2R , we 

can define 

                                           
0

' '

1 01 2 02
1 2' '

1 01 2 02

( ) ( , ), ( , ) ,
max maxs

s S s S

s s s s
G s s s s S

s s s s
∈ ∈

− −
= = ∈

− − 		  (16)

where 0 01 02( , )s s s=  is a pre-selected point in S. The corresponding 
F-functional pinned Brownian sheet on 2[0,1]  is derived if we choose 
F as 

	                                                                            1
1 2

0

([0, ] [0, ]
( )

( ) ( ) .
( )

G x x
s

S

s ds
F x F x

s ds

λ

λ

− ×= = ∫
∫ 			   (17)

Since the distribution of 2[0,1]
sup ( )Fx

W x
∈

 with ,a bF F=  in (15) or 

0s
F F=  in (16) depends on F, it is generally impossible to provide a 
general numerical table for 

,a bGT  or 
0sGT , which implies that the critical 

values of the test should be provided by a Monte Carlo method in 
every application. In order to avoid this difficulty, we consider a 
simplified choice of G as 

	 0
'

0
,0 '

0

( ) .
maxs

s S

s s
G s

s s
∈

−
=

−
			   (18)

It can be seen that such an F can make ( )FW x  to be the standard 
Brownian bridge on [0,1]. The Taylor expansion of the distribution 
of the absolute maximum of the standard Brownian bridge on [0,1] 

1 2
1 2 1 2{ ( ) : ([0, ] [0, ]), ( , ) [0,1] }G X XS A B S A G X X X X X−= ∈ = × = ∈

1 1 1 1,
1 2

1 ( ( ), ( ), ( ), ( ),xx x x x x x xx x
Z Z N A A N A A N A A N A A

κ κ
′′ ′ ′′= = ∩ ∩ ∩ ∩

+

2 2 2 2( ), ( ), ( ), ( ))t
xx x x x x x xN A A N A A N A A N A A′′ ′ ′∩ ∩ ∩ ∩

, 1 1 1 1
1 2

1 ( ( ), ( ), ( ), ( ),xx x x x x x x x xV V A A A A A A A Aµ µ µ µ
κ κ

′′ ′ ′ ′= = ∩ ∩ ∩ ∩
+

2 2 2 2( ), ( ), ( ), ( )) .txx x x x x x xA A A A A A A Aµ µ µ µ′′ ′ ′∩ ∩ ∩ ∩

1 1 2 2 2 21 1
1 1 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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S S S S S S S S

µ µ µ µ µ µµ µ
µ µ µ µ µ µ µ µ

⋅ = + − − − −
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( , , , , , , , ) .
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x x tx x x x x x
A A A A A AA Ah v k k

S S S S S S S S
µ µ µ µ µ µµ µ

µ µ µ µ µ µ µ µ
⋅ = + − − −



Austin Stat 1(1): id1001 (2014)  - Page - 05

Tonglin Zhang Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

is well-known and available in many textbooks [14]. According to 
the Taylor expansion, we can approximately compute the p-value of 

,00sGT  by 

	     
2 2

,00

1 2

1
( ) 2 ( 1) .e

S

k k c
G

k
P T c

∞
+ −

=

≥ ≈ −∑ 			   (19)

If (19) is used, the critical values at 10%, 5%, and 1% levels are 
approximately equal to 1.2239, 1.3581, and 1.6277, respectively 
(Figure 1).

Simulation
We considered both a rectangular region and an arbitrary region 

in our simulations. We chose these regions because we wanted to 
evaluate the efficiency and accuracy of our test when G is given by 
(14), (16), and (18), respectively. We considered the rectangular 
region because we wanted to know how the test was influenced 
by the intensity functions of the two spatial Poisson processes and 
considered an arbitrary region because we wanted to know how the 
test was influenced by the shape of the region, both of which are 
important in applications.

Rectangular Region
We selected a squared region S=[0,20]×[0,20] in the study of 

rectangular regions (Figure1). We simulated realizations from two 
independent spatial Poisson processes, denoted by 1N  and 2N , 
respectively, on S. We chose the intensity function of 1N  equafig: 
rectangular to 

	
2 2

1 1 2 2
2

( 10) 2 ( 10)( 10) ( 10)
2(1 )

1 2
( ) ,

2 1

s s s s
ks e

ρ
ρλ

π ρ

− − − − + −
−

−=
−

and the intensity function of 2N  equal to 

	
2 2

1 1 2 2
2 2

( 10) 2 ( 10)( 10) ( 10)
2 (1 )

2 2 2
( ) ,

2 1

s s s s
ks e

ρ
σ ρλ

πσ ρ

− − − − + −
−

−=
−

for 2
1 2( , ) [0,10]s s s= ∈ , where κ was a constant. It can be seen 

from above that both intensity functions were proportional to 
the probability density function (PDF) of the bivariate normal 
distribution restricted on S with mean (10,10), variance 2 2( , )σ σ , and 
correlation p, where the variance of 1N  was always equal to 1 but the 
variance of 2N  was subjected to change. From the properties of the 
bivariate normal, we had 1[ ( )]E N S k≈  and 2[ ( )]E N S k≈  in this setting 
and the two intensity functions were proportional iff 2 1σ =  in 2 ( )sλ .

We considered 20,20 ( )G G s=  with 20,20 ( )G s  given by (14) and 
0 ,0 ( )SG G s=  for 0 (0,0)s =  with 

0 ,0 ( )sG s  given by (18). Therefore, we 
had two test statistics in the simulation: 

20,20GT  and 
(0,0),0GT . Based on 

Theorem, the asymptotic null distribution of T in the former case 
might be determined by the distribution of 2[0,1]

sup ( )Fx
W x

∈
 with F 

given by (15). The asymptotic null distribution of T in the latter case 
might be determined by a Taylor expansion given by (19). Therefore, 
in addition to the type I an error probability and power functions, the 
accuracy of the asymptotic null distributions provided by Theorem  
was also an important issue.

Our simulation studies contained two parts. In the first part, we 
evaluated the accuracy of the asymptotic null distributions of 

20,20GT  
and 

(0,0),0GT  under the null hypothesis provided by Theorem. We carried 
out a simulation study to evaluate the accuracy of the asymptotic 
null distributions. To do so, we chose κ=10000 and simulated 1N  
and 2N  with σ=1 in 2 ( )sλ . Because the asymptotic null distribution 
of 

20,20GT  might depend on F, we computed its 10%, 5%, and 1% 
upper quantiles in the simulation. To compare, we also computed 
the 10%, 5%, and 1% upper quantiles of

(0,0),0GT . As Theorem  needs 
κ to approach infinity, we considered a simulation study with 10000 
replications when κ was large (i.e. κ=10000). The result is displayed 
in Table1. It shows that the critical values of 

20,20GT  might depend on 
p but the critical values of 

(0,0),0GT  might not. Therefore, the latter case 
would be more reliable to be used in applications.

In the second part, we evaluated the performance of the type I 
error probabilities and power functions of 

20,20GT  and 
(0,0),0GT  with 

p-values derived from their asymptotic null distributions. We used 
a 0.05 significance level in the test. We noted that the asymptotic 
null distribution of 

20,20GT  only deviated from the distribution of 
2[0,1]

sup ( )
x

W x
∈  when was close to one. We focused on the case when 

p was much lower than one, which included two cases (i.e. p=0.0 and 
p=0.5) in our simulation studies. Therefore, we assumed that the 
asymptotic null distribution of 

20,20GT  could be approximately derived 
using the distribution of 2[0,1]

sup ( )
x

W x
∈

, which induced significance 
of the test if

20,20
1.6522GT > . Because the asymptotic null distribution of 

(0,0),0GT  did not depend on p, significance of the test was concluded if 

(0,0),0
1.3581GT >  in the latter case. We considered σ equal to 1.0, 0.9, 

and 0.8 in 2 ( )sλ  and simulated 1000 realizations using each selected 
parameter. The result is display Table 2. It shows that the type I error 
probabilities (when σ=1.0) were not heavily biased in either cases. The 
power functions (when σ=0.9 or σ=0.8) of 

20,20GT  were slightly less 
than the power function of 

(0,0),0GT , which indicated that the latter case 
was more powerful than the former case in the setting that we had 
considered in our simulations.

An arbitrary region
In order to consider the influence of shapes of regions, we 

Figure 1: Realizations of points in the case process in the [0,20]×[0,20] 
region when κ=1000 for ρ equal to 0, 0.5, 0.9, and 0.99, respectively.
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designed the study region as 

	 2
1 2 1 2{( , ) [0,1] : ,0 1},aS x x x x a a= ∈ − ≤ ≤ ≤

which was treated as an irregular region (Figure 2). It was 
approximately expanding along the diagonal line in 2[0,1] . It can be 
easily shown that the area of aS  was equal to 21 (1 )aS a= − −  and 

2[0,1]aS =  if a=1. We chose the intensity function of 1N  equal to 

	 1 2( )
1 (1 )

ks
a

λ =
− −

and the intensity function of 2N  equal to 

	 1 2 1 2
2 2

(2 )( ) 1 ,
( ) 2 2

s s s ss
C

β βκ βλ
β

+ +Γ    = −   Γ    
for 1 2( , ) as s s S= ∈ . Then, points of 1N  were uniformly distributed 

on aS  with 1[ ( )]aE N S k= . Points of 2N  were modified from a Beta 

distribution on the parallel line to the diagonal of 2[0,1] . The intensity 
functions of 1N  and 

2N  were proportional iff β=1. In the simulation, 
we always selected the value of C such that 2[ ( )]aE N S k= .

We considered 
(0,0)GT  and 

(0,0),0GT  given by (16) and (18), 
respectively. Similar to the discussion in Section4.1, the asymptotic 
null distribution of 

(0,0)GT  might depend on the shape of the region but 
the asymptotic null distribution of 

(0,0),0GT  might not. Therefore, we 
evaluated the accuracy of the asymptotic null distribution, the type I 
error probabilities, and the power functions of the two test statistics. 
To evaluate the accuracy of the asymptotic null distribution, we 
chose κ=10000 in a simulation study with 10000 replications (Table 
3). The result showed that the asymptotic null distribution of 

(0,0)GT  
might depend on the shape of the region but the asymptotic null 
distribution of 

(0,0),0GT  might not. Therefore, the latter case would be 
more reliable in applications. 

In addition, we evaluated the type I error probabilities and 
the power functions of 

(0,0)GT  and 
(0,0),0GT  with p-values derived from 

their asymptotic null distributions, respectively. We noted that the 
asymptotic null distribution of 

(0,0)GT  was only heavily biased from 
the distribution of 2[0,1]

sup ( )
x

W x
∈

 when a was close to one. We focused 
on the case when a was not close to one. These included two cases 
(i.e. a=1.0 and a=0.5) in our simulation studies. Similar to before, we 
concluded significance if 

(0,0)
1.6522GT >  or 

(0,0),0
1.3581GT >  based on the 

two test statistics. We considered β equal to 1, 2, and 3 in 2 ( )sλ  and 
simulated 1000 realizations using each selected parameters (Table 4). 
The result showed that the type I error probabilities (when β=1) were 
not heavily biased in both cases and the power functions (when β=2 
and β=3) of 

(0,0)GT  were slightly less than the power function of the case 
for

(0,0),0GT . This indicated that the latter case was more powerful than 
the former case in the setting of our simulations.

In summary, the asymptotic null distribution of T generally 
depends on the intensity functions of 1N  and 2N  as well as the shape 
of the study region, but it may not if the π-system in Theorem  is 
carefully considered. As long as the π-system S is selected, it is enough 
to reject the null hypothesis if the test is significant. However, the 

20,20GT
(0,0),0GT

p 10% 5% 1% 10% 5% 1%

0 1.4990 1.6334 1.9021 1.1809 1.3293 1.6122

0.5 1.4283 1.5698 1.8384 1.1780 1.3285 1.5968

0.9 1.3294 1.4637 1.7254 1.1808 1.3223 1.5987

0.99 1.2586 1.4071 1.6900 1.1816 1.3223 1.6052

Table 1: Upper quantiles of the asymptotic null distributions (i.e. σ=1.0) of T derived from simulations with 410  replications in 2[0, 20]  for 
(0,0),0GT  in (14) and (0,0),0 ( )G sT  

in (18), respectively.

                                                     for different σ                                              for different σ

p κ 1.0 0.9 0.8 1.0 0.9 0.8

0.0 1000 0.035 0.329 0.937 0.041 0.442 0.993

2000 0.048 0.652 0.997 0.038 0.780 1.000

0.5 1000 0.031 0.203 0.854 0.036 0.296 0.955

2000 0.039 0.459 0.990 0.049 0.619 1.000

Table 2:  Type I error probabilities (i.e. σ=1.0) and power functions (i.e. σ=0.9 and σ=0.8) of T at 0.05 significance levels derived from simulations with 1000 
replications in 	  for   	 in (14) and  	 with  in (18), respectively.2[0, 20] 20,20G G=

0 ,0 ( )SG G s=

20,20GT
(0,0),0GT

Figure 2: Realizations of points in the case process in the      region when 
κ=1000 for a equal to 1, 0.5, 0.1, and 0.01, respectively.

aS
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reverse may not be true since B(S) may not be generated by S.

Application
We applied our proposed method to the Nebraska West Nile 

data. The data contained the locations of dead birds from 2002 to 
2013 in Nebraska, USA, which might be related to an infection of 
the West Nile virus. In Nebraska, West Nile virus surveillance effects 
focus on the late summer and early fall months. Since West Nile virus 
was discovered in US in 1999, the virus has been detected in over 
300 species of dead birds. The virus was transmitted to birds through 
the bite of infected mosquitoes, where mosquitoes became infected 
by biting infected birds. Some birds might have become infected after 

consumption of sick or dead birds that were already infected by West 
Nile virus. Some infected birds were known to get sick and died from 
the infection. Reporting and testing of dead birds was one way to 
test for the presence of West Nile virus. The West Nile virus might 
also be transmitted to humans. In Nebraska, the most serious year of 
West Nile virus for humans was 2003, which contributed to around 
60% of infections and 50% deaths in the whole twelve study period. 
Therefore, we focused on the analysis of the spatial patterns of dead 
birds in Nebraska in 2003.

Based on the results of testing of West Nile virus for dead birds 
in 2003, there were 576 positive occurrences and 454 negative 
occurrences (Figure 3). We assumed that the locations of positive 
dead birds were observed from the case process and the locations of 
the negative dead birds were observed from the control process. We 
focused the test on whether the intensity (i.e. 1( )sλ ) of the case process 
was proportional to the intensity (i.e. 2 ( )sλ ) of the control process. To 
apply our test, we used 0 (0,0)s =  in 

0SG  and 
0 ,0SG  in Equations (16) 

and (18) and derived (0,0)G  and (0,0),0G , respectively. When (0,0)G  was 
used, the value of (0,0)GT  was 1.7286. According to the distribution of 

2[0,1]
sup ( )

x
W x

∈
, the p-value was 0.0282. When 

(0,0),0G  was used, the value 
of 

(0,0),0GT  was 1.7075. According to the distribution of [0,1]sup ( )x W x∈ , the 
p-value was 0.0059. Both were significant at the 0.05 significance level. 
Therefore, we concluded that 1( )sλ  and 

2 ( )sλ  were not proportional, 
which indicated that their spatial patterns were not similar. Note that 
we had 1κ  was around 576 and 2κ  was around 454. These were large 
enough for us to apply the asymptotic null distributions to compute 
the p-values of our test statistics.

After we had concluded that the intensity functions between the 
case process and the control process were not proportional, the next 
interest was to discover their difference. We considered the ratio of 
the two intensity functions. We used the concept of a spatial cluster 
model [3], which described the variation of the ratio via a logistic 
regression model as 

	                     1

2

( )log ( ; ),
( )
s f s
s

λ α γ
λ

= + − Θ
			 

						      (20)

a 10% 5% 1% 10% 5% 1%

1 1.5052 1.6341 1.8998 1.1764 1.3068 1.5909

0.5 1.4545 1.5849 1.8390 1.1760 1.3166 1.5757

0.1 1.2918 1.4297 1.7006 1.1983 1.3386 1.5898

0.01 1.2134 1.3428 1.6247 1.1890 1.3143 1.5917

Table 3:  Upper quantiles of the asymptotic null distributions (i.e. β=1.0) of           given by (16) and           given by (18) derived from Monte Carlo simulations with  104  

replications in Sa.
(0,0)GT

(0,0),0GT

(0,0)GT
(0,0),0GT

(0,0)GT
for different β (0,0),0GT

for different β
β κ 1 2 3 1 2 3

1.0 1000 0.040 0.291 0.915 0.046 0.341 0.952

2000 0.042 0.743 1.000 0.048 0.812 1.000

0.5 1000 0.032 0.576 0.998 0.035 0.681 0.999

2000 0.037 0.969 1.000 0.042 0.983 1.000

Table 4:  Type I error probabilities (i.e. β=1.0) and power functions (i.e. β=1.5 and σ=2.0) of            and              at 0.05 significance levels derived from simulations 
with 1000 replications in Ga.

(0,0)GT
(0,0),0GT

Figure 3: Dead bird locations with respect to the positive (circle and red) and 
negative (square and green) to the West Nile virus in the Nebraska West 
Nile data, where the units in the horizontal and vertical axes are given by 
kilometers.
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where α, p, Θ, and γ are unknown parameters. In Equation (20), 
the intercept α reflected the logarithm of the ratio of the overall 
number of case events relative to the overall number of control events. 
The function f(.) described the changes of the ratio (i.e. the relative 
risks) with position to 1 2( , )γ γ γ=  in the study region. Although the 
function f(.) in Equation (20) could be very general, we adopted the 
usual bivariate Gaussian density functions as 

                             
					   

						            (21)

In Equation (21), 11/Θ and 21/Θ  were scale parameters. We 
considered maximum likelihood estimation for parameters in Model 
(20). It showed that the best 

1Θ  was close to zero. Therefore, we 
revised the model as 

	      2
2 2 2[ ( )]

2
2( ; ) , ,

s

revf s e R
γΘ −

− +Θ = Θ ∈
			 

					          (22)

which resulted the parameters in Model (20) to be α, p, 2Θ , 
and 2γ . The MLE of these parameters were ^α=0.7357, ^p =−0.7480,

21/ 234.7Θ = , and 2 540.6( )kmγ = . 

According to the MLE of the parameters in Model (20), we 
concluded that the ratio between 1( )sλ  and 

2 ( )sλ  was almost identical 
if a point moved horizontally but it increased as the point moved 
either to the south or to the north from the central line of the state 
(i.e. y=540.6km). The ratio attained its minimum value (0.9860) at 
the y=540.6km line and gradually attained its maximum at south 
(1.9798) or its maximum at north (1.9490). Therefore, we expected 
to see relative more West Nile birds in the north part or south part 
in the state.

Discussion
We proposed a two-sample KS test to assess the proportionality 

between the intensity functions of two independent Poisson processes. 
Our method is modified from the classic two-sample KS test for the 
equality of CDFs. The difference between the construction of the 
usual two-sample KS test for CDFs and our two-sample KS test for 
intensity functions is that the π-system used in the KS test for CDFs 
has a naturally defined π-system, but such a π-system does not exist 
in the KS test for intensity functions. Therefore, the π-system must be 
selected. There are many different ways to select the π-systems, which 
may result in many different versions of our test statistic. According 
to our theoretical conclusions that we have presented in Section 3, it 
is enough to conclude the alternative hypothesis if a test is significant. 
However, if the test is insignificant, then we can only conclude the 
null hypothesis if the σ-algebra of 2



 can be generated by the selected 
π-system. Therefore, an insignificant test may be not enough to 
conclude the acceptance of the null hypothesis. 

After the π-system has been selected, we have shown that 
the asymptotic null distribution of our test statistic either weakly 
converges to the maximum absolute value of an F-functional pinned 
Brownian sheen on 2



 or weakly converges to the maximum absolute 
value of the standard Brownian bridge on [0,1]. Although it has been 
known that the distribution of the previous one may depend on F, we 
have numerically shown that such a distribution can be approximated 
by the maximum absolute value of the standard pinned Brownian 
sheet on 2



 provided that F is not very close to a degenerate case. 

2 2
1 1 1 2 2 2[ ( )] [ ( )]

22 2
1 2( ; ) , ( , ) .

s s

f s e R
γ γΘ − Θ −

− − +Θ = Θ = Θ Θ ∈

Therefore, using the p-value derived from the absolute maximum of 
the two-dimensional standard Brownian sheet may not be seriously 
biased in most cases of applications. This method is adopted in our 
application section. For the latter case, the asymptotic null distribution 
of our test statistic is uniquely determined. Since the π-system used 
in the construction of the test statistic cannot generate the σ-algebra 
of 2


, an insignificant test is not enough to conclude the acceptance 
of the null hypothesis. Therefore, the interpretation of the test should 
be carefully addressed. 

As long as the rejection of the null hypothesis is concluded, the next 
step is to compare the difference between the two intensity functions. 
A powerful tool is to use the spatial cluster modeling technique, 
which specifies a spatial cluster term in a statistical model. However, 
the significance of the spatial cluster term in the model is not easily 
understood since this involves a famous statistical testing problem 
which concerns hypothesis testing when some of the parameters are 
only present in the alternative hypothesis [19]. For instance, in the 
method that we have used in Section 5, the parameters γ and Θ is 
only present when p ≠0. The usual 2χ -test for the significance of the 
second term in Model (20) is invalid. In this case, we may use the 
p-value derived from the two-sample two-dimensional KS test for 
significance. 
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