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Abstract

An insurance claims department is often interested in obtaining the possible 
distribution of a claim for the purpose of risk management. Information such as 
the probability that a claim will exceed a certain amount is helpful for matching 
the claim complexity with the specialty of claim adjusters. Using information 
available on the claim and the parties involved, we propose a Bayesian quantile 
regression model for the purpose of risk identification and segmentation in the 
claims department. Natural cubic splines are used in order to estimate a smooth 
relationship between the expected quantiles and continuous explanatory 
variables such as the age of the claimant. A case study is conducted using the 
Medical Large Claims Experience Study data from the Society of Actuaries. For 
the claimant age factor that we study, we observe that the high-risk groups, 
such as the infants and elderly, exhibit a much higher risk in terms of high 
quantiles (such as the 99% and 99.5% percentiles) than that is revealed by the 
mean or the median. Particularly for the claims data where there are various 
characteristics available on the claimant and other parties involved, our model 
may reveal helpful information on the possible extremal risk that may be under 
looked in traditional claims modeling. 

Keywords: Risk segmentation; Bayesian quantile regression; Natural cubic 
splines; Markov chain Monte Carlo; predictive modeling of claims

13] for the purpose of risk identification and segmentation in the 
claims department. Quantile regression [14] has become popular in 
predictive modeling in econometrics and social science, as it provides 
a more complete picture of the distribution. Recent developments 
in quantile regression have been focusing on regularization [15-17]. 
Under the Bayesian framework [18], developed Gibbs samplers for 
Bayesian regularized quantile regression with lasso [19] group lasso 
[20] and elastic net penalties [21-22] improved the work of [18] by 
allowing different penalization parameters for different regression 
coefficients. Bayesian methods have the advantage of incorporating 
expert knowledge through priors. In addition, posteriors samples 
from Markov chain Monte Carlo (MCMC) simulations enable 
statistical inference on the estimated coefficients as well as regression 
lines with little extra computational cost.

For the Bayesian quantile regression model we propose for risk 
segmentation, we will conduct a case study using the Medical Large 
Claims Experience Study (MLCES) data from the Society of Actuaries 
(SOA). Natural cubic splines [9,10] will be used for obtaining a smooth 
relationship between the fitted quantiles and the age of the claimant. 
For model fitting, we will try using both the Bayesian quantile 
regression method [8], and non Bayesian methods such as those from 
[15,23,24] For the claimant age factor that we study, we observe that 
the high-risk groups, such as the infants and elderly, exhibit a much 
higher risk in terms of high quantiles (such as 99% and 99.5%) than 
that is revealed by the mean or the median. Particularly for the claims 
data where there are various characteristics available on the claim 
and the parties involved, our model may reveal helpful information 
on the possible extremal risk that may be under looked in traditional 
claims predictive modeling. Our case study confirms that Bayesian 

Introduction
Insurance companies are often interested in assessing the risks 

associated with an insurance claim before it is finally settled. For the 
financial industry, a high risk not only means a high average amount, 
but also the possibility of an extremely large loss. For example, the 
claims department may be interested in the expected quantiles of 
the claim distribution (e.g., what is the probability that the claim 
will exceed a certain amount), once information is available on the 
claim and the parties involved. This information can be used to match 
the claim complexity with the specialty and experience of the claim 
adjusters. Therefore it is helpful to model different quantiles of the 
loss distribution, given certain characteristics of the claim and the 
parties involved.

Regression methods have been proven to be useful for the 
predictive modeling of insurance claims, particularly when there 
is information available on the claim characteristics. Proposed in 
earlier papers such as [1], generalized linear models (GLMs) have 
now become popular in nonlife rate-making and reserving. In 
the recent decades, more sophisticated regression models such as 
the generalized additive models (GAMs, [2]. Bayesian GAMs [3], 
generalized linear mixed models [4], quantile regression [5] have 
been proposed for rate-making and stochastic reserving. In recent 
papers such as [6,7] Bayesian generalized linear models were used 
to predict the outstanding claims for different combinations of loss 
and accident years. The earlier works on claims and reserve modeling, 
however, only involves regression on location parameters such as the 
mean and median of the loss distribution. In this paper, we propose 
to use Bayesian quantile regression [8] with natural cubic splines [9-
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quantile regression may be a useful tool for risk identification and 
segmentation in the claims department.

The rest of the paper is organized as follows. In Section 2, we 
will introduce relevant methodologies such as quantile regression, 
Bayesian quantile regression and natural cubic splines. In Section 
3, we will conduct a case study using the MLCES data from SOA. 
Section 4 concludes the paper.

Methodologies
Quantile regression

The concept of quantile regression was first introduced by [14]. 
While linear regression focuses on conditional expectations, quantile 
regression is for modeling conditional quantiles given certain 
explanatory variables. Denote y1, y2,…, yn as n observations of the 
response variable under concern, and x1, x2,…, xn as the vectors of 
explanatory variables of length k. For 0 < p < 1, the linear regression 
model for the path quantile is given by

                                           ( / ) ,p i i iQ y x x β′=             (1)

Where  Qp(yi/xi) is the inverse cumulative distribution function of 
yi given xi evaluated at the probability p, and β is a vector of coefficients 
for the k explanatory variables in xi. Here we will discuss the methods 
based on a linear relationship between the quantiles of the response 
and the explanatory variables, although the methods may be extended 
for non-linear relationships.

While the coefficients of the ordinary linear regression 
are estimated by minimizing the sum of squared errors,                                                
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which places asymmetric weights on positive and negative 
residuals.

In [23], the regression quantiles (i.e., coefficients) were estimated 
using a modified simplex algorithm proposed by [25, 23] noted that the 
computational cost of the algorithm can increase dramatically when 
the sample size and the number of parameters increase. Hence, in [26] 
the authors proposed interior point methods with a new statistical 
preprocessing approach for l1-type problems. These new algorithms 
increased the computational speed by 10 to 100-fold. Interested 
readers may refer to the original papers for detailed information on 
the algorithms. Statistical inference on the regression quantiles is 
usually achieved by re sampling methods such as bootstrapping. The 
re sampling methods for quantile regression were discussed in papers 
such as [15,27]. Other methods for statistical inference in quantile 
regression include the inversion of rank test proposed by [28] and the 
direct and studentization methods by [29]. In actuarial science [5], 
proposed to use quantile regression for the purpose of nonlife rate-
making [5]. Took advantage of the robustness of the fitted quantiles 
in the presence of outliers. To our knowledge, however, little research 
seems to have been con- ducted in the actuarial literature to make use 
of the capability of quantile regression in revealing comprehensive 

distributional characteristics including both the location and scale.

Quantile regression with penalty
In order to avoid over-fitting and to provide regularization in 

variable estimation, variable selection by penalized likelihood has 
gained much attention under the regression context. For quantile 
regression [15], was the first paper that introduced penalty functions 
to shrink the estimates of random effects for longitudinal data. The 
penalized version of Equation (2) is given by

                                                        ,                            (4)

Where ʎ is the regularization parameter (i.e., a tuning parameter), 
and J(∙) is the penalty function.

In [15,17], the LASSO penalty [19] was used for regularization and 
variable selection. The LASSO quantile regression [15] is estimated by 
minimizing

                                                                   (5)

where ʎ is nonnegative, and 1
β  is the l1 penalty which shrinks the 

regression coefficients to zero as ʎ increases.

Another well-known penalized quantile regression model is 
the SCAD quantile regression pro-posed by [24]. According to Fan 
and [30] the SCAD penalty possesses the oracle properties that the 
LASSO does not have. The SCAD quantile regression coefficients are 
estimated by minimizing

                                     
      (6)

where the SCAD penalty pʎ(∙) is defined based on its first 
derivative and is symmetric around zero.

For θ> 0, the first derivative of the SCAD penalty is given by

                                   ,

where a > 2 is a tuning parameter. The SCAD penalty has a form 
similar to the LASSO penalty around zero, but it places a uniform 
penalty on large coefficients in order to achieve the unbiasedness for 
penalized estimators.

In addition to the SCAD penalty, [24] proposed the adaptive 
LASSO penalty for quantile regression. The adaptive LASSO is a 
generalization of the LASSO penalty which allows adaptive weights 
(i.e., different weights) for different regression coefficients. According 
to [31] the adaptive LASSO also posses the oracle properties. Details 
of adaptive LASSO quantile regression can be found in [24].

Bayesian quantile regression
In [8] the authors introduced Bayesian quantile regression using 

a likelihood function based on the asymmetric Laplace distribution. 
This is based on the property that the minimization of Equation 
(2) is equivalent to the maximization of the likelihood function for 
in-dependently distributed asymmetric Laplace distributions. The 
probability density function of an asymmetric Laplace distribution 
is given by

                       { }( ) (1 )exp ( )p pf u p p uρ= − − ,  (7)

where 0 < p < 1 and ρp(_) is the check loss function defined 
in Equation (2). Except for p = 1/2, the density in Equation (7) is 
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asymmetric. 

After introducing a location parameter μ and a scale parameter 
σ into Equation (7), we may obtain a generalization of the density as

                    ( )(1 )( ; , ) exp p
p

up pf u
ρ µ

µ σ
σ σ

− −
= − 

 
.       (8) 

              

Under the assumptions of the asymmetric Laplace distribution 
and a link function as the inverse cumulative distribution, one 
may estimate the coefficients of quantile regression by maximizing 
the likelihood similar to parameter estimation in the case of a 
generalized linear model (GLM). Denote ( ), ( ; )i i i i iE y x f yµ µ=  as 
the distribution function of the response variables yi, and the GLM 
link function as ( )ig µ . Regardless of the original distribution of the 
data, inference can be made if we assume that for any 0 < p < 1,

                                (9)

where ( )p i iQ y x  is the inverse cumulative distribution function 
defined earlier in Subsection 2.1.For the purpose of Bayesian analysis, 
we denote π(β) as the priors for the pth regression quantiles  (i.e., 
coefficients), y = (y1, y2,…,yn) as the n observations of the response 
variable, and ( )pL y β  as the conditional distribution of the response 
variable based on the asymmetric Laplace distribution.

That is,

                               1
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∑          (10)

Bayesian inference can be made based on the posterior 
distribution given by

     .

Although a conjugate prior is not available for exact analysis, 
Markov chain Monte Carlo (MCMC) techniques may be used to 
obtain posterior samples of the regression coefficients for the purpose 
of statistical inference [8]. Demonstrated that improper priors on β 
will yield a proper posterior distribution. Vague or non-informative 
priors may be chosen to reflect lack of information, while informative 
priors may be specified when subject-area knowledge is available. In 
the case of an informative prior, the prior mean represents a guess 
of the regression coefficients, and the prior variance or precision 
indicates the uncertainty on the guess. In quantile regression, the use 
of MCMC enables statistical inference on the regression quantiles 
with little extra computational cost. Using the posterior samples from 
MCMC, one may construct credible intervals for the fitted quantiles, 
where non Bayesian methods encounters difficulties and for which re 
sampling methods can be computationally expensive, particularly for 
large insurance data.

In the recent decade, the developments of Bayesian quantile 
regression have had a focus on parameter regularization and variable 
selection. For example, [18] proposed Bayesian regularized quantile 
regression with lasso [19] group lasso [20] and elastic net penalties 
[21,18] developed Gibbs samplers for the three types of regularized 
quantile regression, and demonstrated that the Bayesian regularized 
quantile regression perform better than the non-Bayesian methods 
in terms of accuracy and prediction by simulation studies [22] 
improved the work of [18] by allowing different tuning parameters 

for different regression coefficients, with the performance of their 
method evaluated by simulations and case studies. Interested readers 
may refer to the original papers for details on the new methods.

Natural cubic splines
In the quantile regression model given in Equation (1), the 

relationship between the quantiles of the response variable and the 
explanatory variables is assumed to be linear. This is often not true 
under realistic situations. For example, in property and casualty loss 
modeling, the younger people and the elderly usually exhibit a higher 
risk in terms of potential losses (see, e.g., [32]). Another example 
is the vehicle age variable in auto rate-making, which has a similar 
pattern at the younger and older vehicle ages (see, e.g., [33]). Some 
natural ways to model a nonlinear relationship include polynomials 
and piece-wise functions. For example, the property and casualty 
pricing software Emblem enables actuaries to model the relationship 
between the expected losses and continuous rating factors using 
polynomials. However, for polynomials, the number of parameters 
grows exponentially with the order of polynomials. And the shapes 
of polynomials are constraint based on the order specified. Splines 
are piecewise polynomials with local polynomial representations. For 
regression purposes, fixed-knot splines are widely used for obtaining 
a nonlinear relationship. Splines are assumed to be continuous, and 
have continuous first and second derivatives at the knots, in order to 
provide a smooth relationship. Splines can be defined based on the 
order of polynomials, the number of knots and their positions. Cubic 
splines are the lowest-order splines with the knot-discontinuity that 
is undetectable by human eyes (see, e.g., Chapter 5 in [9]. In order to 
avoid the erratic behavior of splines at the boundaries that may cause 
a problem in extrapolation, we may use natural cubic splines that add 
the additional constraints of linearity beyond the two boundaries. 
For example, in[10,11] natural cubic splines were used to model the 
relationship between disease prevalence and medical expenditure 
(utilization) with sampling probabilities in order to extrapolate 
the disease prevalence and medical expenditure (or utilization) for 
hidden sub-populations in weighted sampling.

Here we present a natural cubic spline with 4 knots as an example. 
Denoting (x1, x2, x3, x4) as the 4 knots, the spline is defined by three 
cubic functions within each interval divided by the knots:

                       k=1,2,3

with ak, bk, ck and dk be the coefficients of the local cubic functions. 
At the four knots the natural cubic spline has the nice properties that

  

For splines, one may perform a linear basis expansion for the 
convenience and simplicity of model implementation. A natural 
cubic spline with K knots can be represented by K basis functions 
h1(x); h2(x),…,hK(x). The basic functions satisfy the property that
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where α1; α2,…,αK are the coefficients. Using the basic functions 
from basis expansion, linear models can be conveniently fitted to the 
basic functions, which results in natural cubic splines in providing a 
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smooth and flexible relationship.

Case Study on MLCES Data
Data

For demonstration purposes, we will conduct a case study 
using the Medical Large Claims Experience Study (MLCES) data 
from the Society of Actuaries (SOA). The 1999 file [34] that we use 
has 1,591,738 records, containing the total paid charges as well as 
explanatory variables such as the age, the gender and the major disease 
diagnosis of the claimant. Here we chose the age of the claimant as a 
factor that may impact the distribution of the claims. The reason why 
we chose age is because insurance claims usually exhibit a declining 
trend at the younger ages and an increasing trend at the older years 
[32]. It would be interesting to see how the distribution (including 
the upper tail that is of particular interest to the insurance industry) 
varies by the age of the claimant. In order to obtain homogeneous 
data with a reasonable sample size, we only include claims with a 
major diagnosis of respiratory system problems. The subset we use 
contains 165,786 records and one specific explanatory variable for 
illustration purposes, although in reality we may have numerous 
variables available on the claim to be used as predictors in our quantile 
regression model. For example, for auto bodily injury claims, the 
claims department may have various information on the claimant, 
the insured, the injury conditions, and the legal firm involved, before 
the claim is finally settled. The information may be used to predict 
the quantiles of the claim, using a model fitted from historical data. 
Based on the estimated quantiles, the claims department may be able 
to make decisions on assigning adjusters or taking risk management 
measures if necessary.

Exploratory analysis
Due to the heavy-tailed property of the claim data, we transform 

the amount into the logarithmic scale in order to obtain a good 
visualization of the distribution, particularly at the body of the claim 
distribution. The age of the claimant for the MLCES data varies from 
0 to 105, with the sample size decreasing for older ages. As our dataset 
provides an adequately large sample size, it would be interesting to 
study how the distributions of claims vary by the age of the claimant. 
In Figure 1, we present the distribution of log10 (total paid charges) 
in violin plots which contains box plots as well as density curves for 
different age groups. From an animation density plot we created by 
age, we observe that the ages 0-1 have a much higher location and 
scale for the distribution of the claim amounts than toddler years after 
age 2. We divide the claimants into 5-year age groups, with the infants 
(age 0 and 1) and the elderly over 76 in separate groups as they exhibit 
different loss behaviors. After the grouping, we have ensured that the 
sample size (varying from 515 to 24,727) is large enough for each age 
group. We observe that the median and the first and third quantiles 
all show a declining trend at the younger ages and an increasing trend 
at the older years. The range of the distribution (i.e., IQR) also varies 
with the age of the claimant, especially obvious at the older ages. From 
the density curves, the older age groups have a larger spread of density 
at the upper tail. Some age groups such as the 71 || 75 and 76+ groups 
have multiple modes in the distribution, suggesting heterogeneity 
due to possible difference in other factors such as the relationship to 
the subscriber and deductibles. All of the above observations suggest 
a higher financial risk for claimants at younger and older ages, both 

in terms of the claim severity and variability.

Bayesian quantile regression with natural cubic splines
In this section, we propose to use Bayesian quantile regression in 

order to obtain a more complete picture of the claim distribution by 
the age of the claimant. In claim practices, the model may provide the 
claims department with the possible distribution of the claim based 
on a fitted model from historical data. The information will be helpful 
for the claims department for matching the claim complexity with the 
specialty of the claim adjusters for the purpose of risk management.

Natural cubic splines are used to provide a flexible shape to 
capture the trend in the lower and older ages. Denote y1, y2,…,yn as 
the log10(total paid charges) for n medical claims, and x1, x2,…, xn as 
the observed age for the n claimants. For the pth quantile, the quantile 
regression model is given by

                                                         ,   (11)

where h1(∙), h2(∙),…,hK(∙) are the K basis functions for the natural 
cubic spline. Note that the fitted quantiles are invariant under the log 
and exponential transformations. 

For the purpose of risk identification and segmentation at the 
claims department, the quantiles of 5%, Q1, Median, Q3, 95%, 99% 
and 99:5% are fitted on the log10(total paid charges), in order to obtain 
a complete picture of the loss  distribution. Diffuse priors are used 
due to lack of information on the parameters. In particular, for the 
coefficients of natural cubic splines, independent normal priors with 
the mean of 0 and the variance of 100 are used; for the parameter σ, 
an inverse gamma prior with a shape parameter of 0.01 and a scale 
parameter of 0.01 is used. Based on Figure 1, we choose the ages 0, 
20, 60 and 75 as the knots for the natural cubic splines. From Figure 
1, the median and quantiles seem to change smoothly except after 
age 60. In order to capture the change in pattern, we chose age 60 
as the third knot so that a separate cubic function can be fitted for 
these ages. The end knot 75 was chosen such that a linear trend is 
assumed after the age 75 for which the sample size is much smaller. 
We also include an indicator about infancy (i.e., age 0 and 1) based 
on a preliminary analysis on the empirical quantiles. The basic 
functions for the natural cubic splines were obtained from the ns () 
function in the R package splines. For model fitting, we tried using 
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the method proposed by [25], interior point method [23], interior 
point method with preprocessing [23], penalized  uantile regression 
with the LASSO [15] and SCAD [24] penalties, and the Bayesian 
implementation based on the asymmetric Laplace distribution [8]. 
For Bayesian quantile regression, vague priors are specified to reflect 
our lack of information on the coefficients of natural cubic splines. 
Except for the penalized methods that show a slightly erratic behavior 
on the high quantiles (such as the 99% and 99:5% percentiles) all the 
other methods give very close results in terms of the fitted quantiles.

In Figure 2, we present the fitted quantiles by the age of the 
claimant using Bayesian quantile regression with natural cubic 
splines, both in the log and dollar scales. The log scale will offer us 
a complete picture on the body of the claim distribution, while the 
dollar scale shows us how large the difference it can be for the high-
risk and low-risk groups in terms of high quantiles such as the 99% 
and 99:5% percentiles. For Bayesian quantile regression, we obtain 
the fitted quantiles and credible intervals based on 4000 posterior 
samples after discarding the first 2000. In addition, a linear regression 
model with natural cubic splines is fitted to the log10 (total paid 
charges), assuming the losses follow lognormal distributions.

We observe that the quantiles of Q1, Median, Q3, 95%, 99% 
and 99:5% all have a declining trend at the younger ages, and an 
increasing trend at the older years. The range of the loss distribution 
(i.e., variability) has an obvious increase at both the younger and older 
ages. Based on the sharp increases in the higher quantiles, we may 
conclude that large losses (e.g., a claim over 10,000) are much more 
possible for claimants at older ages. Quantile regression offers us a 
complete picture of how the claim quantiles change with the age of 
the claimant, quantifying the earlier findings and giving us an alarm 
on the much higher risk of an extremely large loss for the infants and 
elderly people. For example, the difference in the 99:5% percentiles 
can be as high as 15 times between the high-risk and low-risk groups, 
while the difference in the median or mean is only 3 times.

 Using a quantile regression model fitted from historical data, 
the claims department may be able to obtain the probability that a 
claim will exceed a certain amount, based on the claim characteristics 
and the parties involved. They may then use the information for 
risk segmentation and management (e.g., in matching the claim 
complexity with the specialty of the claim adjusters for better 
risk management, or taking other risk management initiatives if 

necessary). For the current data, none of pairs of fitted quantiles in 
Figure 2 seem to cross over. Theoretically, crossing could occur for 
certain datasets. In these cases, interested readers may refer to [35] for 
a constraint version of quantile regression that addresses the potential 
issue.

Taking advantage of the flexibility offered by MCMC in Bayesian 
quantile regression, we are able to obtain the 95% credible regions 
for the fitted quantile regression lines, under the natural cubic spline 
assumption. In Figure (3-7) we present the fitted quantiles with 
credible regions obtained from the same 4000 posterior samples 
used for calculating the posterior mean. The empirical quantiles 
and the exact 95% confidence intervals are obtained for each age 
and are presented for comparison purposes. From Figure (3-7), 
we observe that the credible intervals for the fitted quantiles from 
Bayesian quantile regression are very narrow comparing to those of 
the empirical quantiles. This is due to the fact that there are only 4 
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Figure 3: Fitted median of log10 (total paid charges) by age of claimant. 
The left panel is the tted quantiles from Bayesian quantile regression, while 
the right panel is based on the empirical quantiles for each age. The dot in 
the center represents the (posterior) mean, while the line displays the 95% 
credible (or confidence) intervals.
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Figure 4: Fitted Q3 of log10 (total paid charges) by age of claimant.
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Figure 5: Fitted 95% percentiles of log10 (total paid charges) by age of 
claimant.
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parameters for obtaining the relationships under the assumption of 
natural cubic splines with 4 knots, while it requires 76 parameters 
in order to estimate a separate quantile for each age. Particularly for 
younger and older ages, the confidence intervals for the empirical 
quantiles can be very wide, owing the small sample sizes at these 
ages. For the Bayesian quantile regression model with natural cubic 
splines, the credible intervals are very narrow due to an extremely 
large sample size and the smooth assumption made in the model. 
We note that there is only a moderate increase in the width of the 
credible intervals in the older and younger ages, despite their small 
sample sizes. For these ages, we may need to pay a special attention, 
as the actual increases in extremal risks may be underestimated due 
to the sparse data for these ages. For the high quantiles such as the 
99:5% and 99% percentiles, the actual difference between the high-
risk and low-risk groups may be even higher than that is revealed by 
our model.

Concluding Remarks
In this paper, we propose to use Bayesian quantile regression 

with natural cubic splines for the purpose of risk identification and 
segmentation in the claims department. Natural cubic splines are 
used to provide a flexible relationship between the quantiles and 
continuous explanatory variables. In claims predictive modeling, 
such explanatory variables include the age variable that exhibits 
a decrease in the earlier ages and a sharp increase in the older ages 
[1,32]. Bayesian and MCMC techniques enable us to make statistical 
inference and obtain credible regions for the fitted quantiles, with 
little extra computational cost. Particularly in more realistic situations 
when there are many explanatory variables available for the predictive 
modeling of claims; our Bayesian regression model may be a useful 
tool for a comprehensive understanding of the loss distribution. In 
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Figure 6: Fitted 99% percentiles of log10 (total paid charges) by age of 
claimant.

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Age

99
.5

%
 p

er
ce

nt
ile

1,
00

0
5,

00
0

20
,0

00
10

0,
00

0
50

0,
00

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

�
�

�

� � � �
�

� � �

�

�

�

�

�
� �

�

�

� �

�
�

�

�

�

�

�

� �

�

� � �

�

�
�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Age

99
.5

%
 p

er
ce

nt
ile

1,
00

0
5,

00
0

20
,0

00
10

0,
00

0
50

0,
00

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Figure 7: Fitted 99:5% percentiles of log10 (total paid charges) by age of 
claimant.

these situations, the good balance of flexibility and parsimony offered 
by natural cubic splines may be needed for simultaneously including 
many continuous variables. The examples of these variables for auto 
bodily injury claims include the age of the claimant, the age of the 
insured and the claimant, the number of years licensed for the driver 
and the insured, the duration of the claim, the vehicle age, the credit 
score of the claimant and the driver, the number of years claim free 
for the driver and the insured, the number of existing claims, and 
the income of the claimant and driver. For individual insurance 
companies, we may expect them to have a smaller sample size for 
modeling. Hence we may expect to see wider credible intervals when 
we include many explanatory variables into the quantile regression 
model. Under these situations, our Bayesian quantile regression 
model will provide a realistic tool for claims predictive model for 
the purpose of risk identification and segmentation at the claims 
department. In addition to the methodological benefits, predictive 
modeling of the claim distribution including extremes (high 
quantiles) may help insurance companies identify more sources of 
risks. For example, our case study on the MLCES data suggests that 
the high-risk groups such as the infants and the elderly may exhibit 
a much higher risk in terms of high quantiles (such as the 99:5% and 
99% percentiles) than that is revealed by the location parameters 
such as the mean and the median. While the mean and the median 
only indicates a difference of 3 times, the difference in the high 
quantiles is revealed to be as high as 15 times between the low-risk 
and high-risk groups. The actual difference may ever be higher, due 
to possible underestimation caused by lack of data for the older ages. 
The extremely large losses, although with a very small possibility, may 
cause a severe financial impact once they occur. With the rising of 
the claim costs, developing comprehensive predictive models for the 
claims department has become an increasingly important task for risk 
management of insurance companies.
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