
Citation: Assimakopoulos A, Polyzoidis K and Kyritsis AP. Stem Cells in Gliomas. J Stem Cells Res, Rev & Rep. 
2014;1(2): 1009.

J Stem Cells Res, Rev & Rep - Volume 1 Issue 2 - 2014
ISSN : 2381-9073 | www.austinpublishinggroup.com 
Kyritsis et al. © All rights are reserved

Journal of Stem Cells Research, Reviews & 
Reports

Open Access 
Full Text Article 

Abstract

Gliomas are central nervous system tumors exhibiting marked cellular 
heterogeneity, invasiveness and resistance to any therapeutic intervention. 
Experimental evidence suggests that most of these properties of gliomas are 
due to the presence of glial stem cells within the gliomas. Markers of glioma 
stem cells include Nestin, CD133 and CD15. The anatomic location of stem 
cells within gliomas is predominantly the perivascular areas. Glioma patients 
with high percentage of glial stem cells have poor survival. Although eradication 
of the glioma stem cells could extend survival it is difficult to succeed due to 
their high resistance to therapy. Apart from the glioma stem cells, normal neural 
stem cells that can be induced from pluripotential stem cells may be used 
therapeutically for gliomas as carriers for various antitumor agents due to their 
tropism for neural tissue, if their safety can be attained.
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that had surgery showed that nestin was expressed in astrocytic 
gliomas and correlated with the degree of malignancy [12]. Similarly, 
another immunohistochemichal study in 87 primary CNS tumors 
showed that nestin was expressed in 95.8% of gliomas with higher 
expression in malignant tumors and inversely correlated with patient 
survival. Interestingly, the immunohistochemical staining of nestin 
in a xenograft model demonstrated its location mainly in the invasive 
tumor cells at the tumor periphery rather than tumor center [13].

Prognostic significance of glioma stem cells
Immunohistochemical analysis in 125 patients with gliomas of 

various grades revealed that the presence of glioma stem cells in the 
tumor, as manifested by Nestin and/or CD133 expression, especially 
the co-expression of both, was an independent predictor of poor 
survival [14]. Another study in 95 gliomas of various grade revealed 
that both the proportion of CD133-positive cells and their ability to 
organize in clusters were significant independent negative prognostic 
factors. In addition, the presence of CD133-positive cells was an 
independent risk factor for tumor recurrence [15].

There is evidence for a crucial role of the expression of glioma 
SC genes and tumor recurrence as well as response to therapy [16]. 
Bmi1, an oncogene that is expressed in stem cells and associated with 
increased cell proliferation and invasion potential of gliomas was 
able to be downregulated by miR-218, a microRNA involved in its 
function. These findings suggested that miR-218 may be functioning 
as tumor suppressor, inhibiting invasion and proliferation of glioma 
cells [17].

Glioma stem cells mediating resistance to therapy
Gliomas, are tumors highly resistant to chemotherapy [18] or any 

other therapy [19]. Evidence suggests that GSCs may play a significant 
role mediating such a resistance [20]. Established human glioblastoma 
cell lines, such as U-87 MG possess subpopulation of glioma stem 
cells expressing CD133 and resistant to Fas-activated apoptosis in 
contrast to the non stem glioma cells that exhibit sensitivity to Fas-
mediated apoptosis [21]. The apparent heterogeneity of glial tumors 
[1,2] appears to be a crucial element for in vitro studies in glioma cell 

Introduction
Gliomas are central nervous system (CNS) tumors of glial origin, 

exhibiting a profound cellular heterogeneity with tumor cells showing 
various degrees of differentiation, and genetic heterogeneity with 
dissimilar gene alterations in neighbourhood cells of the same tumor 
[1]. This heterogeneity could be due to possible origin of glioma from 
neural stem cells (NSCs) which after pre-existing or acquired genetic 
abnormalities drive the NSCs to malignant transformation and 
formation of glioma stem cells [2]. Glioma stem cells exhibit increased 
invasiveness, angiogenesis and resistance to therapeutic interventions 
[3-5]. These glioma stem cells are eventually responsible for tumor 
malignancy, growth and recurrence [6]. 

Normal stem cells are capable of infinite proliferation like 
cancer cells. Apart to the well-known hematopoietic stem cells 
from bone marrow, stem cell stores exist in other adult tissues. 
Thus, subcutaneous fat and dermis consist of accessible sources for 
obtaining stem cells, with minimal discomfort to the patient [7]. Stem 
cells niche denotes the anatomic location or microenvironment where 
stem cells are located, and this microenvironment interacts with the 
stem cells to regulate various cell functions [8]. Recent evidence 
suggests that human glioma niches are localized in the perivascular 
areas within gliomas [9].

Study of both normal stem cells and glioma stem cells are 
important during therapy of gliomas: Normal stem cells may be used 
during treatment for gliomas, mainly as vehicles to transfer various 
therapeutic agents to the tumor; study of glioma stem cells is also 
important to assess the tumor behavior, response to treatment and 
prognosis.

Stem Cell Markers
Glioma stem cells and NSCs co-express similar markers essential 

for similar functions in both types of cells (Table 1) [10]. Markers 
of glioma stem cells include Nestin, CD133 and CD15 [11]. Nestin, 
is a type-VI intermediate filament that is briefly expressed in glioma 
tissue during brain development. A study in 70 patients with gliomas 
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lines, since most of them consist of only a small cell subpopulation 
of the original tumor, making tissue culture results of preclinical test 
of new therapeutic agents difficult to interpret. Thus, establishment 
of glial stem cell lines would be more appropriate to test potential 
therapeutic agents for further in vivo testing.

GSCs have been also resistant to TRAIL even at high concentration 
of 100-2,000 ng/ml, in contrast to glioma cells with non stem cell 
characteristics. Their resistance to TRAIL has been attributed to 
hypermethylation of caspase-8 promoter and low caspase-8 levels 
for TRAIL-mediated apoptosis. However, reversion of expression 
of caspase-8 by 5-Aza-2’-deoxycytidine was not enough to reinstate 
TRAIL effectiveness suggesting interplay of additional mechanisms 
to TRAIL resistance [22].

The serine/threonine kinase maternal embryonic leucine-zipper 
kinase (MELK) is an enzyme encoded by the MELK gene, highly 
expressed in gliomas and significantly associated with the malignant 
phenotype. MELK expression is reduced by p53 expression leading to 
increased GSCs apoptosis. MELK is able to form a complex with the 
oncoprotein c-JUN in GSCs but not normal stem cells and mediate 
the JNK-driven MELK/c-JUN signaling to maintain tumor survival 
and resistance to therapeutic interventions [20]. GSCs but not 
normal neural stem cells synthesize nitric oxide through nitric oxide 
synthase-2 (NOS2) that is associated with tumor growth and reduced 
patient survival. Thus, NOS2 inhibition may be a possible target for 
glioma treatment [23].

Although GSCs exhibit prolonged cell cycle and checkpoint, 
there appears to be no enhanced DNA repair capability during 
the checkpoints to explain cell resistance due to DNA repair [24]. 
After radiotherapy of GSCs in vitro, early postradiation resistance 
was noted in cells under the presence of EGF and FGF-2, but late 
postradiation apoptosis was encountered in cells with non-functional 
p53 [25].

Survivin, a protein encoded by the BIRC5 gene, is expressed 
during G2-M phase of the cell cycle and abundant in malignant 
glioma cells and GSCs, mediating inhibition of apoptosis through 
caspase inactivation. Comparison of Survivin immunohistochemical 

expression in glioblastomas of 44 untreated and 31 recurrent post-
chemoradiation and resistant to chemotherapy patients, demonstrated 
higher expression in the tumors of the recurrent patients especially in 
the perivascular areas [26]. 

Glioma SCs exhibit a deregulated balance between cell 
proliferation and differentiation, specifically increased cellular 
proliferation and decreased cellular differentiation, partially 
mediated by the Notch signaling pathway. Inhibition of this pathway 
by Notch-1 small interfering RNA (siRNA), it was able to inhibit 
growth of glioma SCs in vitro and in vivo in nude mice, suggestive 
that Notch-1 gene may represent a possible target for glioma therapy 
[27]. Stem cells isolated from glioma specimens could induce tumors 
in immunocompromised mice that secreted vascular endothelial 
growth factor (VEGF) leading to endothelial cell migration and 
excessive angiogenesis. These angiogenic effects could be suppressed 
by bevacizumab a potent inhibitor of angiogenesis and currently used 
therapy for gliomas [28].

Experimental evidence in nude mice bearing C6 gliomas suggests 
that disruption of GSC niche by antiangiogenic therapy could 
sensitize the GSCs to chemotherapy [25]. Furthermore, clinical 
evidence indicates that radiotherapy of the stem cell niches in patients 
with gliomas could extend survival. Thus, a study in 55 patients with 
malignant gliomas treated with radiotherapy showed that patients 
subjected to bilateral subventricular zone that harbors the GSCs 
niches had a significant improvement in progression-free survival 
(15.0 vs 7.2 months) than patients whose radiotherapy field did not 
include these areas. In addition, higher radiation fractions may be 
more efficient that lower fractions [29].

Normal stem cells as carriers of therapeutic agents to 
gliomas

Normal NSCs and mesenchymal stem cells (MSCs) may be used 
as cellular vehicles for targeted delivery of various agents to glioma 
cells (Table 1). However, the normal stem cells that carry anti-tumor 
substances may be used therapeutically only if their malignant 
transformation potential can be eliminated [30]. MSCs isolated from 
the umbilical cord blood could migrate towards glioma cells via a 
partially dependent on the PDGF/PGGFR system glioma tropism, 

Normal neural stem cell Normal mesenchymal stem cell Glioma stem cell Glioma cell

Nestin + + + -

CD-133 + + + -

Capable to infinite proliferation + + + +

Malignant - - + +

Invasive - - + +

Affect patient prognosis - - + +

Resistance to chemotherapy Unknown Unknown ++ +

Resistance to radiotherapy +/- Unknown ++ +

Resistance to apoptotic agents - - ++ +

Localization Subventricular zone of brain Umbilical cord blood, adipose tissue, muscle, 
cornea Perivascular area of glioma N/A

Tropism to glioma +++ + + -

Carrier of anti-glioma agents* +++ +++ - -

Table 1: Characteristics of normal stem cells and glioma stem cells.

* Chemotherapy, therapeutic genes, viruses, or tumor-toxic molecules
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and provoke a Fas-mediated apoptosis in glioma cells [31]. NSCs 
secrete factors that inhibited the proliferation of glioma cells, both 
in vitro and in vivo in gliomas growing in the cisterna magna of mice 
[32]. In addition to secretion of growth inhibitory factors, NSCs could 
be used as cellular vehicles to deliver chemotherapy, therapeutic 
genes, viruses, or tumor-toxic molecules to malignant gliomas due to 
their tropism for glioma cells [33,34]. Preclinical comparison of the 
two cell lines revealed that although both NSCs and MSCs allowed 
adenoviral replication intracellularly, the efficiency of the NSCs was 
much higher to MSCs [35]. 

Difficult tumor areas to attain enough concentration of a 
therapeutic agent consist of hypoxic areas with necrosis and poor 
blood circulation, such as the tumor necrotic core and the adjacent 
to tumor areas that contain infiltrating tumor cells with still poor new 
blood vessel formation. Interestingly, NSCs tropism is predominantly 
directed towards the hypoxic areas of the malignant gliomas located 
both in tumor core and the periphery of the tumor. This function 
appears to be mediated via stromal cell-derived factor-1 (SDF-1) 
SDF-1/CXCR4, uPA/uPAR, VEGF/VEGFR2, and hepatocyte growth 
factor/c-Met signaling pathways [36].

Tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) demonstrated glioma-directed killing activity suggestive 
of a promising antitumor treatment strategy in clinic [37,38]. Thus, 
employment of TRAIL-secreting human MSCs could represent a 
tumor specific targeted therapy for gliomas alone or in combination 
of a chemotherapeutic agent such as temozolomide [39]. Another 
example is the use of normal NSCs carrying secretable TRAIL in an 
orthotopic mouse model of gliomas in combination with systemically 
administered other specific therapies to enhance the anti-tumor effect 
[40].

Normal stem cells can be used to deliver enzymes that convert 
a chemotherapeutic prodrug to an active chemotherapy drug. An in 
vivo example of using normal NSCs to this effect consists of usage 
of a cytosine deaminase (CD)-expressing clonal human NSC line, 
HB1.F3.CD, to deliver the enzyme to gliomas growing in brains 
of mice in order to convert the systemically administered prodrug 
5-fluorocytosine to the active chemotherapeutic 5-fluorouracil locally 
[41]. 

Facilitated delivery of gene therapy agents is another potential 
application of normal stem cell technology for treatment of 
gliomas. Animal experiments have demonstrated that transfer of 
the interleukin-4 gene into C57BL6J mouse NSCs and injection 
into syngeneic brain gliomas significantly increased the survival of 
most tumor-bearing mice [42]. Similarly, NSCs transduced with 
herpes simplex virus-thymidine kinase gene (NSCtk) were injected 
in distant sites of rat brains harboring C6 glioma cells, following 
by the systemic administration of ganciclovir (GCV), a drug 
against herpes virus. The reason for the injection in distant areas 
was to study the migratory potential of neural stem cells and their 
effectiveness to reach the glioma cells. The result was active migration 
of neural stem cells towards the tumors, even when implanted at the 
controlateral hemisphere, and marked inhibition of tumor growth 
and prolonged survival of the animals [43]. Induced pluripotent 
stem cells derived from primary mouse embryonic fibroblasts were 
used to generate NSCs. Subsequently, the NSCs were transduced 

with a baculoviral vector having the HSV TK gene and were injected 
into the controlateral to the tumor hemisphere in mice. Systemic 
administration of ganciclovir, resulted in inhibition of glioma growth 
suggesting that NSCs may be used as vehicles for gene therapy [44,45]. 
Apart from intratumoral delivery of normal stem cells, intravascular 
delivery of NSCs appears to be an effective strategy to target tumors 
of neural origin, inside the brain [46].

Conclusion
The profound cellular heterogeneity of gliomas in association 

with their invasiveness and resistance to therapeutic interventions 
is at least partially due to the presence of glioma stem cells within 
the malignant types of these tumors. The anatomic location or 
microenvironment where these cells are located is denoted as stem 
cell niches in the perivascular areas within gliomas. Study of glioma 
stem cells is important to assess the tumor behavior, delivery of 
chemotherapeutic agents, response to treatment and prognosis. In 
addition to glioma stem cells, normal neural stem cells exist in the 
brain of human beings in addition to other locations. These normal 
stem cells have high tropism for glioma tumors and can migrate 
even from distant areas towards gliomas. This property renders them 
good candidates as transfer vehicles to carry toxic agents to gliomas. 
Further research is needed to assess their safety prior to their routine 
utilization as carriers of therapeutic agents to humans.
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