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Abstract

Limbal Stem Cell Deficiency (LSCD) encompasses a group of eye disorders 
characterized by abnormal maintenance of the limbal stem cells. This painful 
and potentially blinding condition poses a challenge in transplantation biology; 
whereby whole corneal transplantation would normally fail due to the depletion of 
the recipients’ limbal stem cells. The most preferred technique of management is 
transplantation of ex vivo expanded limbal stem cells to the damaged eyes. This 
article discusses the therapy options for unilateral and bilateral cases of LSCD, 
the clinical outcomes, components of cells and substrates that are currently 
being investigated or have been utilized by this technique, and brings into focus 
the newer therapy of using a scaffold-free cell delivery system to treat LSCD.

Keywords: Limbal stem cells; Limbal stem cell deficiency; Tissue 
engineering; Cell sheet

i.e Steven-Johnson syndrome, ocular cicatricial phemphigoid and 
chronic limbitis. Trauma, surgery and cryotherapy to the limbus, 
radiation and topical instillation or subconjunctival injection of toxic 
drugs are some iatrogenic causes.

In the majority of cases involving corneal blindness, whole corneal 
transplantation is the therapy of choice; but this is not the solution for 
LSCD. Failure of transplantation in this condition lies in the loss of 
host stem cells and thus, inadequate self renewing cells to replenish 
the epithelial surface of the grafts taken from the donor. Due to this, 
the management of LSCD shifts to transplantation of healthy limbal 
tissue to the damaged limbal areas. This follows the rationale that re-
epithelisation will take place when there are residual healthy limbal 
cells in the diseased eye, or a sufficient number of limbal cells are 
replaced by transplanting whole pieces of healthy limbal tissues [13]. 
However, this surgical method will usually involve a large area of graft 
taken from a donor site, thus rendering it susceptible to secondary 
LSCD.

Current Perspective on Tissue Engineering 
for LSC Transplantation

Tissue engineering was first introduced as an interdisciplinary 
approach using cell biology and engineering to restore or enhance 
the biological functions of tissues and organs using substrates 
[14]. A landmark report in 1997 by Pellegrini revealed a successful 
transplantation of ex vivo expanded limbal epithelium grown on a 
fibrin carrier [15]. Another commonly used substrate is the amniotic 
membrane [16]. The outgrowths from the explants originated from 
a contra lateral healthy eye were allowed to proliferate to form a cell 
sheet before transplantation to the damaged eye. The advantage of 
using autologous ex vivo expansion of limbal epithelium is the small 
sized-biopsy taken from the healthy eye which will prevent secondary 
LSCD in the donor eye. The need for a long term immune suppression 
is usually eliminated [17]. These bioengineered tissue constructs 
comprising of a cellular component and a substrate counterpart 
allow the cells to grow and differentiate towards corneal epithelial 
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Introduction
The corneal limbus forms the narrow transition zone between 

the corneal and conjunctival epithelia and is believed to harbour the 
cornea stem cells [1-3]. The limbal stroma is an area rich in blood 
vessels, contains melanocytes, Langerhans cells and abundant with 
nerve supply. Adult stem cells are now believed to reside in most 
tissue populations for regenerative purposes and tissue repair. Stem 
cells are protected from hostile external factors in a specialized 
microenvironment called the “stem cell niche”. It is hypothesized that 
the stem cells for the cornea are deposited deep in the basal layer of 
the limbus [3-7].

More recent advances using the lineage tracing technique in 
K14+ve Confetti mice supported the evidence that mouse limbus 
significantly contributed to self renewal and regeneration of the 
mouse cornea [8,9]. Limbal cells also responded rapidly to major 
wounding compared to the wound healing potential of the long-term 
corneal clones which mainly responded to minor injury [9].

Limbal Stem Cell Deficiency (LSCD)
This is a painful and blinding condition of the eye caused by 

abnormal maintenance of the LSC [10]. It can be broadly categorized 
into unilateral or bilateral involvement, acute or chronic conditions. 
Among the causes are hereditary genetic disorders called aniridia, 
where there is developmental dysgenesis of the anterior chamber 
of the eye due to PAX6 gene mutation [11,12]. Acquired causes of 
LSCD include chemical and thermal injury, inflammatory conditions 
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lineage and proliferate to form an epithelial sheet to be transplanted 
to the ocular surface. The purpose of this is to maintain the corneal 
epithelial barrier function from external insults such as pathogens, 
allergens, desiccation or mechanical injury. 

Clinical Trials for Limbal Stem Cells 
Transplantation 

Translational research involving ex vivo expansion of LSC and 
transplantation to treat LSCD was among the first stem cell tools to 
reach the patients. Using keywords such “limbal stem cell deficiency” 
and “limbal stem cell insufficiency” in a search at the database for 
human clinical trials https://clinicaltrials.gov, we found only 10 
registered clinical trials (one trial on the use of collagenase in a 
tissue culture protocol was disregarded). These clinical trials mainly 
covered the use of established protocols for ex vivo expanded LSC and 
oral mucosa. This implies that the growing numbers of clinical studies 
for the treatment of LSCD remains in the academic institutions 
and laboratories; needing further optimization of protocols before 
materializing into registered clinical trials. Furthermore, the long and 
complex pathways from preclinical trials to regulatory approval and 
consent, Good Manufacturing Practice (GMP)-compliant laboratory 
protocols and industrial partnership for funding of clinical trials 
and production of “accredited tissues” are among the obstacles from 
making these studies nearer to the clinic [18,19]. Till date, Holoclar 
is the only ex-vivo expanded autologous human corneal epithelial 
stem cell product authorized to be used as an advanced therapy 
recommended by The European Medicines Agency (EMA) for the 
treatment of LSCD in the European Union. However, Holoclar still 
awaits comprehensive data report before being adapted for general 
clinical practice. 

The Outcome of Ex Vivo Expanded Limbal 
Epithelial Transplantation

Several investigators have investigated into LSC fate and how 
restoration of the damaged ocular surface takes place after LSC 
transplantation [20]. It is very unlikely that it is due to replacement 
of stem cell numbers alone. It was suggested that LSC transplantation 
has stimulated dormant LSC to renew and proliferate to the site of 
injury. In addition, LSC transplantation was also believed to attract 
circulating corneal progenitors or directly from Bone Marrow (BM) 
to repopulate the site of injured ocular surface by a chemotactic 
stimulus. Studying the LSC fate in different aetiologies of stem cell 
deficiency and the types of tissue transplantation would be a future 
direction to explain the process of cellular restoration. At present, 
there is no consensus on LSC fate in different types of transplantation 
[20-22] such as in penetrating keratoplasty, alone or in combination 
with limbal allograft transplantation, or in the case of ex vivo LSC 
transplantation.

A short term review of 28 clinical studies on cultivated corneal 
epithelial transplantation since 1997 to 2010 shows a success rate of 
67% [23]. This would probably be due to the majority of tissues used 
in these studies being autologous in nature (84%). Another long term 
study on the outcome of cultured limbal epithelial transplantation 
using fibrin as a carrier gave 66% of full success, 19% for partial 
success and 15% of failure rate respectively [24]. In another review 
of clinical outcomes [25], despite the heterogeneity of the type of 
grafts, the biological carrier to transplant LSC, culture methods, and 

the clinical cause of the disease, the overall outcome of 17 studies 
was similar at 67% success rate. In a recent systematic review and 
meta-analysis of LSC transplantation using AM, an almost similar 
outcome was recorded. The success rate and vision improvement 
was at 67% and 62% respectively [26]. Surprisingly, there was no 
significant difference between autografts and allografts. A longer 
post transplantation period of observation is warranted to justify this 
conclusion.

It could not be emphasized enough that long term success of LSC 
transplantation depends on the quality of the grafts or the frequency 
of LSC on the grafts [27]. Rama et al, observed the presence of more 
than 3% of p63+ve stained cells in the holoclones were associated 
with 78% of success rate. The outcome could be improved by a more 
effective identification or isolation of LSC, or the use of stem cell 
enrichment methods such as the side population assay [28,29]. 

Similar to the allogeneic response occurring in solid organ 
transplantations, the issue with allogeneic tissue or cell transplants in 
LSC remains their immunogenicity due to major histocompatibility 
complex mismatch [30]. Major allogeneic responses include the 
“graft-versus-host” immunological reactions which need tolerance-
inducing strategies [31,32].

In the case of total and bilateral LSCD, cultivated oral mucosa 
epithelial transplantation on AM has also been clinically applied 
with promising results [33,34]. This approach when reviewed for 
15 treated eyes showed a success rate of 67% total re-epithelisation, 
without any major complications for a period of at least 34 months. A 
similar method, but in the absence of 3T3 feeders and animal serum 
has also been trialled in two patients with successful regeneration of 
corneal epithelium [35]. However, the phenotypic difference in the 
corneal and oral mucosa epithelia leads to new vascular formation 
and corneal opacity. A secondary penetrating keratoplasty may 
sometimes be performed to achieve a clear central cornea and 
improve visual acuity [36,37]. 

Alternative Sources of Cells 
The lack of donor corneas in sufficient quantity and of sufficient 

quality to generate limbal epithelia for transplantation has motivated 
many clinicians and scientists to search for alternative sources of 
cells for cellular therapy. The option for replacement of adult limbal 
epithelial stem cells sourced from outside the cornea includes human 
Embryonic Stem Cells (ESC) which can be directed to the corneal 
epithelial lineage. Although ESCs have better differentiation and 
expansion potential than adult stem cells their use is hampered by 
ethical issues, regulatory problems and associated funding limitations. 

The use of appropriate ECM cellular matrix i.e. collagen IV, 
laminin or fibronectin in a differential protocol successfully direct 
human ESC into corneal epithelia [38]. In a mouse derived ESC, 
the use of collagen IV as a culture substrate has resulted in corneal 
progenitors which expressed PAX6 and CK12 genes. PAX6 is 
important for ocular development while CK12 has been regarded 
as a specific marker of corneal epithelial differentiation. Indeed, 
transplantation of these corneal progenitors on denuded cornea 
produced epithelial surface re-epithelisation after 24 hours. However, 
restrictions surrounding ESC, namely ethical issues, technique of 
differentiation, accessibility and the costs, have limited the use of 
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ESC for a larger scale translational approach. Presence of human 
leucocyte antigen Class I molecules which are a major immunological 
mediators pose as an immunogeneic challenge which requires tissue 
tolerance mechanisms before ESC transplantation [39,40].

In the meantime, the advent of human induced Pluripotent Stem 
Cells (iPSC) has partly resolved the ethical issues surrounding ESC. 
The use of transcription factors; Oct3/4, Sox2, c-Myc and Klf4 [41], 
on somatic cells can induce pluripotency in these cells, a process 
called “reprogramming”. Hayashi et al. successfully induced cornea 
epithelial cells from human adult dermal fibroblast-derived iPSC and 
human adult corneal limbal-derived iPSC [42] by using the stromal 
cell-derived inducing activity method. In an animal model, mouse 
iPSC had been demonstrated to differentiate into corneal epithelial-
like cells when co-cultured with corneal stromal cells in the presence 
of additional factors such as β-Fetal growth factor, Epidermal 
Growth Factor (EGF) and nerve growth factor [43]. Transcriptionally 
induced pluripotent cells could be a source of tumour formation 
[44,45] due to lentiviral integration at the site of gene promoters, 
and poses the problem of a reliable cellular differentiation. There is 
also a concern about immunogenicity when used in transplantation 
[46]. The latter is reported to be related to aberrant methylation and 
epigenetic memory to their tissue of origin and dependent on the 
reprogramming methods. 

MSCs have tri-lineage potential into adaptogenic, chondrogenic 
and osteogenic differentiation, have paracrine secretions of 
immunomodulatory molecules and immune-suppressive properties; 
ideal for cell-based therapeutic potentials. MSCs were originally 
isolated from BM, are conveniently isolated from other non-marrow 
tissue sources such as from the musculoskeletal system [47], adipose 
tissue [48], oral tissues [49] and umbilical cord blood [50]. Most 
studies utilizing MSC for LSCD were conducted in animals [51-
53]. Almaliotis et al. recently used injectable MSC into the corneal 
stroma and conjunctiva of alkaline-induced injury in rabbits with a 
remarkable outcome [54]. Comparative studies between BM-derived 
and LSC showed comparable results for ocular surface regeneration in 
a rabbit model [48]. Although MSC-based therapies for the treatment 
of LSCD are rapidly evolving, the field is in need of further knowledge 
on the mechanism of action, standardized culture protocols and 
human clinical trials. 

Substrates for Cell-Based Therapy
The second major component in tissue engineering is the 

biomaterials used as the substrate or scaffolds for cell delivery. The 
initial focus was to replicate the physical and mechanical properties 
of the target tissues. Prospectively, more emphasis is being given to 
develop “biomimetic” substrates which integrate the substrates with 
the biological environment resembling closely the natural topography 
of the limbal epithelial crypts as the supportive Extra Cellular Matrix 
(ECM) [55]. An ideal carrier substrate has often been described to 
have not only optical clarity, but also able to withstand the culture 
conditions, flexible to the shape of the cornea and quite tough for 
surgical manipulation including the suturing.

Biological Substrates
Fibrin sheet

Historically, the use of biological substrates has been the strategy 

for LSC transplantation when fibrin sheet was first utilized for this 
indication [15]. A mixture of fibrinogen and thrombin was placed 
on a plastic ring to allow a coagulation cascade. Primary limbal 
keratinocytes were grown on feeder layers on this fibrin sheet and 
the cell to matrix construct were then transplanted to patients’ eyes 
[56]. A clinical trial involving larger number of patients showed a 
success rate of 76.6% up to 10 years [27]. Fibrin gels are transparent, 
absorbable and easier to manipulate however, they present a risk of 
contamination [57] and cause LSC differentiation [58].

Human amniotic membrane
AM as part of the carrier system to transfer limbal epithelial sheets 

has been the substrate of choice to restore ocular surface disorders 
[59]. AM facilitates re-epithelisation and has been shown to have 
anti-inflammatory [60], anti-angiogenic [61,62], and anti-scarring 
properties [63]. To date, AM has been the most widely used substrate 
to deliver LSC to the ocular surface. Several modifications have been 
tried to provide different forms of AM to improve its quality as a 
carrier, including the use of denuded AM over an intact membrane 
[33]. 

The drawbacks of AM are the difficulty to sustain the donor supply 
and clinical variations in the tissues which might affect the growth 
conditions. The screening of AM for transmission of diseases is costly 
and ineffective because it does not totally rule out viral transmission. 
Additionally, the use of scaffolds or substrates as implants is associated 
with risk of surgical infections [64]. Hence, researchers have explored 
the potentials of other materials and used new strategies to develop 
synthetic tissue-engineered constructs to improve the outcome of 
LSC transplantation for ocular surface regeneration. 

Contact Lens (CL)
Di Girolamo group introduced CL populated by cellular 

expansion of limbal/conjunctival explants using a xeno-free culture 
system for autologous transplantation in partial and total LSCD 
[65]. Sixteen eyes of patients with multiple aetiologies showed an 
impressive restoration of epithelium in 63% of cases at 2.5 years of 
follow up. This delivery method of cell-based therapy is attractive 
in many ways; it uses a regular CL which makes the cost relatively 
affordable, surgically it is easier to manipulate, and transparency is 
not a problem. However, the explants method is preferable to the cell 
suspension method where multiple limbal/conjunctival biopsies from 
different sites need to be harvested to obtain an adequate size of cell 
sheet due to poor proliferation of cells from the explants on CL. 

Collagen
Collagen forms a major component of the cornea stroma and 

naturally remodelled by the host cells. Hydrated collagens (hydrogels) 
are biocompatible, inert, biodegradable and attractive to replace or to 
complement AM. Hydrogels are more structurally uniformed and the 
physical and mechanical properties can be modified to suit cellular 
proliferation [66]. Hydrogels are made up of a 3D network of polymers 
and water, comprised of macro-molecules connected by electrostatic 
forces, hydrogen bond, or covalent links. As a scaffold, hydrogels 
can encapsulate cells and biomolecules as a cellular niche. However, 
the large composition of water weakens the scaffolds. Cross-linking 
of collagen with other substances improve the mechanical property 
of a scaffold [67] however this might alter cellular remodelling and 
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impairs the biomimetic property of the substrate [68]. Fibrin, collagen, 
plastically compressed and alginate hydrogels [69-71] are some of 
the examples used in clinical studies for LSCD treatment. The use of 
hydrogels for cellular-based therapies needs a continuous search for 
the ideal and optimum balance of the composition of the polymer 
materials i.e. water, ionic cross-linking, pores and permeation. These 
properties will determine cellular adhesion and the biocompatibility 
of the materials for tissue engraftment [72].

Plastic compressed collagen
Plastic compression is a technique used to extract water from a 

collagen hydrogel by downward absorption onto a filter paper [73]. 
This is performed to increase the mechanical strength of the hydogels. 
Levis et al demonstrated scaffolds made of compressed collagen gel 
when compared to denuded AM to be a better biomimetic substrate 
for the growth of Limbal Epithelial Cells (LEC) [74]. This proved to 
be mechanically strong, thin and transparent. Additionally, these 
collagen can be further molded into 3D niche structure mimicking 
the limbal crypts to allow for better LSC growth [55]. However further 
standardization of the methods and clinical data is necessary before 
taking it further as a cell-based therapy for LSCD [75].

Nanofibers
Fabricated nanofibers can be produced by electro spinning 

methods where biocompatible substrates and polymers are 
interwoven together [76]. This three-dimensional structure allows a 
large surface area and a suitable environment for stem cells growth 
and transfer. In a recent study, fibrous nanoscaffolds from poly-ε-
caprolactone demonstrated numerous advantageous properties of 
controlled shape and porosity, and have a high surface: volume ratio. 
As a 3D biocompatible structure, this can mimic the physiological 
ECM cellular matrix, used for synthetic ocular surface regeneration. 
This scaffold system was shown to be biocompatible with LEC and 
use of these with cells resulted in good cellular adhesion and cell 
proliferation [77]. A recent clinical study using MSCs seeded on 
nanofibers showed significant wound healing from alkaline injury 
with suppression of inflammation in a rabbit model [78].

Silk fibroin
A biodegradable material has the advantage of variable 

degradation rate for the viable cells to be released at the site of injury. 

Silk fibroin which is synthesized from the cocoon of silkworm has 
been found to be a useful substrate for LEC; it was able to support 
corneal epithelial proliferation, differentiation and stratification 
[79,80], although induction of an inflammatory response in the host 
is a primary concern. The cost of production of a natural silk material 
for bioengineering is an area of concern. A combination of silk with 
synthetic materials such as polymers and ceramic for the purpose 
of cell-based therapy in the cornea is an interesting area for further 
investigations.

Keratin films
Keratins are a group of structural proteins present on the epithelia 

of hard or filamentous structures such as the hair, nails, feathers 
and hoofs of higher vertebrates. Keratin makes these structures to 
be water insoluble, however its mechanical strength and capability 
for cells to grow and proliferate on modified keratin-coated culture 
surfaces have garnered a lot of interest in tissue engineering. Reichl 
et al. demonstrated in vitro human corneal epithelial growth on 
modified keratin films that was comparable to AM [81]. By mixing 
two types of keratin dialysate and subjected it to multiple steps in 
processing, the keratin films that were produced were mechanically 
strong for surgical handling but encountered difficulty such as suture 
loosening; which needs further modification to the keratin structures. 

There is an increasing need to develop a synthetic, biocompatible 
and slowly biodegradable material which could be used as substitute 
for the AM. The use of a synthetic material would lessen the risk of 
infection. A substrate which is resilient, biocompatible, and able to 
adapt to the surface of the eye is an ideal carrier system for delivering 
of cultured corneal epithelium and a viable option for cellular-based 
therapy. A summary of tissue-engineered substrates is provided in 
Table 1.

Emerging Techniques and Future Directions
Decellularised tissues

Strategies involving decellularisation of tissues and organs have 
been of interest to LSC biologists in the past decade. This technique 
involves complete removal of cellular components, cellular materials 
and antigens from tissues to reduce its immunogenicity [82]. This 
is done while maintaining the corneal structure and the ECM. 
Decellularisation can be achieved by using chemical and enzymatic 

Materials Advantages Disadvantages
Human Amniotic 

membrane
Stimulates re-epithelisation, have anti-inflammatory, anti-angiogenic 

and anti-scarring properties
Semi-transparent, donor to donor variability in the quality of tissues, 

risk of disease transmission and limited strength
Fibrin sheet Transparent, absorbable, elastic and easier to manipulate Risk of contamination and cause early LSC differentiation

Collagen Biocompatible, relatively cheap, less immunogenic Collagen hydrogels are mechanically weak, early contraction and 
easily degraded

Plastically 
compressed collagen

Transparent, mechanically strong and shaped to the ocular surface. 
Biocompatible for epithelial growth and stratification

Standardization of methods to achieve desired collagen 
concentration and density/stiffness to cater to collagen biomimetic 

properties.

Silk fibroin Biodegradable, and compatible with cellular growth and proliferation. Cost of production of natural silk and potential triggering of 
inflammatory response.

Contact Lens (CL)
Mechanically strong, transparent and easy to handle. Multiple 

biopsies harvested and grow in cultures is advantageous for repeat 
procedures.

Synthetic CL may not be an effective biological substrate for cell-
based expansion of limbal/conjunctival explants resulting in poor 

proliferation of cells and loss of SC.

Nanofibers Three-dimensional structure of nanoscaffolds allows a large surface 
area and a conducive environment for cellular growth along the fibers.

Elecrospinning fibers consisting of polymers and solvents could be 
toxic to the cells.

Keratin films
Modification to the structures can produce keratin films which are 
transparent, absorbable and easy for surgical handling. Cellular 

growth and proliferation are comparable to AM

Optimisation of the structures of keratin films imperative to achieve 
a biocompatible construct, better for suturing, non-toxic and non-

immunogenic.

Table 1: Biomaterials used in corneal epithelial tissue engineering in the clinical studies for LSCD.
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methods, followed by re-seeding with new cells, a process called 
“scaffold recellularisation” [83,84]. The challenge is to find the 
right seeding density and the choice of repopulating the surface 
or via injecting into the scaffold. Maintaining a close balance of 
preserving structural, mechanical and physiological properties of 
the decellularised cornea and reducing cellular immunogenicity are 
among the challenges in this area.

Cell sheet tissue-engineered system
A technique developed to escape from any use of carrier 

system is a new temperature-responsive polymer e.g. Poly 
N-isopropylacrylamide (PIPAAm) as a cell sheet engineering 
system introduced by Okano group and first used in the cornea by 
Nishida in 2004 [85]. This method allows transfer of cells and the 
ECM to the ocular surface at different temperature conditions in the 
absence of a scaffold. PIPAAm polymer and its co-polymer show a 
hydrophobic state at 37oC and at this temperature cells would adhere 
and proliferate. At 32oC and below, the cells are detached because of 
polymer hydration, which allows harvesting of the cells in a mono 
layer cell sheet while maintaining cell-to-cell and cell-to-ECM 
contact. Cell sheet fabricated hepatocytes and β-islet cells have been 
engineered for clinical treatment of liver failure and type I diabetes 
mellitus [86,87]. As for the treatment of cardiac diseases, a plethora 
of options are available from cardiomyocytes cell sheets, myoblast 
sheets, MSC sheets and cardiac progenitor cell sheets for cardiac 
regeneration [88]. 

Tissue-engineering in the cornea has often maintained the use 
of a carrier system for delivery of the cells. A carrier system has 
the disadvantages of an exposure to infections and transmission 
of pathogens, especially in the case of biological scaffolds. Both of 
these factors can hinder tissue integration and affect the survival of 
tissue transplantation. Suture less techniques as advocated in the 
transplantation of cell sheets also have the advantages of reducing 
inflammation post-operatively [85].

The cell sheet engineering system has expanded to include 
autologous oral mucosa cell sheet fabrication for the treatment of 
bilateral cases of LSCD; a potential alternative carrier to AM [89,90]. 
In a study of 26 eyes with bilateral LSCD, transplanted oral mucosa 
cell sheets supported successful regeneration of the ocular surface 
with 64% success rate, reduced vascularization and demonstrated a 
safe and well-tolerated product [90]. This suggests the therapy would 
also be beneficial for LSCD caused by ocular infection, aggressive 
surgery at the limbus, contact lens wear and chemical injuries that 
can contribute to corneal damage. Soon the advances of this system 
will also breach the barriers surrounding corneal endothelial [91] and 
retinal pigment epithelial transplantation [92]. 

Scaffold-free tissue engineered cellular tools have advantages 
over many scaffolds currently available due to their high cellular 
availability and long term engraftment. This might be due to the non-
invasive thermo-responsive cellular detachment method allowing 
cells to maintain its ECM, surface proteins, growth factors receptors, 
ion channel and junctional proteins, which are vital for cellular 
differentiation [93,94]. However, the disadvantages of cellular sheet 
approach are possibly the premature detachment of cells or insufficient 
contact of transplanted cells on the corneal surface. In addition, the 
costs of the system and the time involved in the manufacturing of 

autologous cell sheets are part of the disadvantages. These methods 
need to be further refined to include protocols to assess tissue viability, 
the quality of tissue constructs and safety assessment. The quality of 
cells in the tissue construct is vital to ensure permanent tissue repair 
and successful engraftment.

Conclusion
There have been significant developments in tissue engineering-

based therapeutic tools for the treatment of LSCD. Ex vivo expanded 
LSC transplantation has been proven to be able to reconstruct the 
ocular surface in LSCD eyes using a biological scaffold system which 
provides transfer of proliferative cells to the target site. The search 
for the ultimate construct has posed the clinicians, scientists and 
the industry with many challenges before it can be realized into 
human clinical trials and clinical practice. Future directions in this 
field should focus on the development of a high speed, consistent in 
quality, affordable cell propagation system, accredited by regulatory 
bodies, and accessible to many users.

References
1.	 Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. 

Limbal epithelial crypts: a novel anatomical structure and a putative limbal 
stem cell niche. British Journal of Ophthalmology. 2005; 89:n 529-532.

2.	 Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. 
Characterization of the limbal epithelial stem cell niche: novel imaging 
techniques permit in vivo observation and targeted biopsy of limbal epithelial 
stem cells. Stem Cells. 2007; 25: 1402-1409.

3.	 Schlötzer-Schrehardt U, Kruse FE. Identification and characterization of 
limbal stem cells. Exp Eye Res. 2005; 81: 247-264.

4.	 Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal 
of corneal epithelium. Nature. 1971; 229: 560-561.

5.	 Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 
64K corneal keratin in vivo and in culture suggests limbal location of corneal 
epithelial stem cells. The Journal of Cell Biology. 1986; 103: 49-62.

6.	 Yeung AM, Schlötzer-Schrehardt U, Kulkarni B, Tint NL, Hopkinson A, Dua 
HS. Limbal epithelial crypt: a model for corneal epithelial maintenance and 
novel limbal regional variations. Arch Ophthalmol. 2008; 126: 665-669.

7.	 Sun TT, Tseng SC, Lavker RM. Location of corneal epithelial stem cells. 
Nature. 2010; 463: 10-11.

8.	 Di Girolamo N, Bobba S, Raviraj V, Delic NC, Slapetova I, Nicovich PR, et 
al. Tracing the fate of limbal epithelial progenitor cells in the murine cornea. 
Stem Cells. 2015; 33: 157-169.

9.	 Amitai-Lange A, Altshuler A, Bubley J, Dbayat N, Tiosano B, Shalom-
Feuerstein R. Lineage tracing of stem and progenitor cells of the murine 
corneal epithelium. Stem Cells. 2015; 33: 230-239.

10.	Ahmad S. Concise review: limbal stem cell deficiency, dysfunction, and 
distress. Stem Cells Transl Med. 2012; 1: 110-115.

11.	He Y, Pan Z, Luo F. A novel PAX6 mutation in Chinese patients with severe 
congenital aniridia. Curr Eye Res. 2012; 37: 879-883.

12.	Smith WM, Lange JM, Sturm AC, Tanner SM, Mauger TF. Familial peripheral 
keratopathy without PAX6 mutation. Cornea. 2012; 31: 130-133.

13.	Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface 
disorders. Ophthalmology. 1989; 96: 709-722.

14.	Langer R, Vacanti JP. Tissue engineering. Science. 1993; 260: 920-926.

15.	Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca 
M. Long-term restoration of damaged corneal surfaces with autologous 
cultivated corneal epithelium. Lancet. 1997; 349: 990-993.

16.	Nakamura T, Sotozono C, Bentley AJ, Mano S, Inatomi T, Koizumi N, et 

http://www.ncbi.nlm.nih.gov/pubmed/15834076
http://www.ncbi.nlm.nih.gov/pubmed/15834076
http://www.ncbi.nlm.nih.gov/pubmed/15834076
http://www.ncbi.nlm.nih.gov/pubmed/17332511
http://www.ncbi.nlm.nih.gov/pubmed/17332511
http://www.ncbi.nlm.nih.gov/pubmed/17332511
http://www.ncbi.nlm.nih.gov/pubmed/17332511
http://www.ncbi.nlm.nih.gov/pubmed/16051216
http://www.ncbi.nlm.nih.gov/pubmed/16051216
http://www.ncbi.nlm.nih.gov/pubmed/4925352
http://www.ncbi.nlm.nih.gov/pubmed/4925352
http://www.ncbi.nlm.nih.gov/pubmed/2424919
http://www.ncbi.nlm.nih.gov/pubmed/2424919
http://www.ncbi.nlm.nih.gov/pubmed/2424919
http://www.ncbi.nlm.nih.gov/pubmed/18474777
http://www.ncbi.nlm.nih.gov/pubmed/18474777
http://www.ncbi.nlm.nih.gov/pubmed/18474777
http://www.ncbi.nlm.nih.gov/pubmed/20182462
http://www.ncbi.nlm.nih.gov/pubmed/20182462
http://www.ncbi.nlm.nih.gov/pubmed/24966117
http://www.ncbi.nlm.nih.gov/pubmed/24966117
http://www.ncbi.nlm.nih.gov/pubmed/24966117
http://www.ncbi.nlm.nih.gov/pubmed/25187087
http://www.ncbi.nlm.nih.gov/pubmed/25187087
http://www.ncbi.nlm.nih.gov/pubmed/25187087
http://www.ncbi.nlm.nih.gov/pubmed/23197757
http://www.ncbi.nlm.nih.gov/pubmed/23197757
http://www.ncbi.nlm.nih.gov/pubmed/22621390
http://www.ncbi.nlm.nih.gov/pubmed/22621390
http://www.ncbi.nlm.nih.gov/pubmed/22146551
http://www.ncbi.nlm.nih.gov/pubmed/22146551
http://www.ncbi.nlm.nih.gov/pubmed/2748125
http://www.ncbi.nlm.nih.gov/pubmed/2748125
http://www.ncbi.nlm.nih.gov/pubmed/8493529
http://www.ncbi.nlm.nih.gov/pubmed/9100626
http://www.ncbi.nlm.nih.gov/pubmed/9100626
http://www.ncbi.nlm.nih.gov/pubmed/9100626
http://www.ncbi.nlm.nih.gov/pubmed/20673588


J Stem Cells Res, Rev & Rep 2(1): id1020 (2015)  - Page - 06

Bakiah Shaharuddin Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

al. Long-Term Phenotypic Study after Allogeneic Cultivated Corneal 
Limbal Epithelial Transplantation for Severe Ocular Surface Diseases. 
Ophthalmology. 2010; 117: 2247-2254.

17.	Niethammer D, Kümmerle-Deschner J, Dannecker GE. Side-effects of long-
term immunosuppression versus morbidity in autologous stem cell rescue: 
striking the balance. Rheumatology (Oxford). 1999; 38: 747-750.

18.	Daniels JT, Secker GA, Shortt AJ, Tuft SJ, Seetharaman S. Stem cell therapy 
delivery: treading the regulatory tightrope. Regen Med. 2006; 1: 715-719.

19.	Magnus D. Translating stem cell research: challenges at the research frontier. 
J Law Med Ethics. 2010; 38: 267-276.

20.	Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R, et al. Outcomes 
and DNA analysis of ex vivo expanded stem cell allograft for ocular surface 
reconstruction. Ophthalmology. 2005; 112: 470-477.

21.	Shimazaki J, Kaido M, Shinozaki N, Shimmura S, Munkhbat B, Hagihara M, 
et al. Evidence of Long-term Survival of Donor-Derived Cells after Limbal 
Allograft Transplantation. Investigative Ophthalmology & Visual Science. 
1999; 40: 1664-1668.

22.	Djalilian AR, Mahesh SP, Koch CA, Nussenblatt RB, Shen D, Zhuang Z, et 
al. Survival of Donor Epithelial Cells after Limbal Stem Cell Transplantation. 
Investigative Ophthalmology & Visual Science. 2005; 46: 803-807.

23.	Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S. 13 years of cultured 
limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem. 2011; 
112: 993-1002.

24.	Pellegrini G, Rama P, Matuska S, Lambiase A, Bonini S, Pocobelli A, et al. 
Biological parameters determining the clinical outcome of autologous cultures 
of limbal stem cells. Regen Med. 2013; 8: 553-567.

25.	Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, et al. 
Transplantation of Ex Vivo Cultured Limbal Epithelial Stem Cells: A Review 
of Techniques and Clinical Results. Survey of Ophthalmology. 2007; 52: 483-
502.

26.	Zhao Y, Ma L. Systematic review and meta-analysis on transplantation of 
ex vivo cultivated limbal epithelial stem cell on amniotic membrane in limbal 
stem cell deficiency. Cornea. 2015; 34: 592-600.

27.	Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal 
stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010; 
363: 147-155.

28.	Meeson A, Fuller A, Breault DT, Owens WA, Richardson GD. Optimised 
protocols for the identification of the murine cardiac side population. Stem 
Cell Rev. 2013; 9: 731-739.

29.	Shaharuddin B, Harvey I, Ahmad S, Ali S, Meeson A. Characterisation of 
human limbal side population cells isolated using an optimised protocol from 
an immortalised epithelial cell line and primary limbal cultures. Stem Cell Rev. 
2014; 10: 240-250.

30.	Petersdorf EW. The major histocompatibility complex: a model for 
understanding graft-versus-host disease. Blood. 2013; 122: 1863-1872.

31.	Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et 
al. Tregs prevent GVHD and promote immune reconstitution in HLA-
haploidentical transplantation. 2011; 117: 3921-3928.

32.	Fan H, Cao P, Game DS, Dazzi F, Liu Z, Jiang S. Regulatory T cell therapy 
for the induction of clinical organ transplantation tolerance. Semin Immunol. 
2011; 23: 453-461.

33.	Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, Quantock 
AJ. Cultivation of Corneal Epithelial Cells on Intact and Denuded Human 
Amniotic Membrane. Investigative Ophthalmology & Visual Science. 2000; 
41: 2506-2513.

34.	Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita 
S. Transplantation of cultivated autologous oral mucosal epithelial cells in 
patients with severe ocular surface disorders. Br J Ophthalmol. 2004; 88: 
1280-1284.

35.	Kolli S, Ahmad S, Mudhar HS, Meeny A, Lako M, Figueiredo FC. Successful 
application of ex vivo expanded human autologous oral mucosal epithelium 

for the treatment of total bilateral limbal stem cell deficiency. Stem Cells. 
2014; 32: 2135-2146.

36.	Ma DH, Kuo MT, Tsai YJ, Chen HC, Chen XL, Wang SF, et al. Transplantation 
of cultivated oral mucosal epithelial cells for severe corneal burn. Eye (Lond). 
2009; 23: 1442-1450.

37.	Satake Y, Higa K, Tsubota K, Shimazaki J. Long-term Outcome of Cultivated 
Oral Mucosal Epithelial Sheet Transplantation in Treatment of Total Limbal 
Stem Cell Deficiency. Ophthalmology. 2011; 118: 1524-1530.

38.	Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, et al. 
Differentiation of human embryonic stem cells into corneal epithelial-like cells 
by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 
2007; 25: 1145-1155.

39.	Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA. Targeted Disruption of the 
Î²2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic 
Stem Cells. Stem Cells Transl Med. 2015; 4: 1234-1245.

40.	Karabekian Z, Ding H, Gtybayeva G, Ivanova I, Muselimyan N, Toma I, et al. 
HLA class I depleted hESC as a source of hypoimmunogenic cells for tissue 
engineering applications. Tissue Engineering Part A. 2015.

41.	Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 
663-676.

42.	Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, et al. 
Generation of Corneal Epithelial Cells from Induced Pluripotent Stem Cells 
Derived from Human Dermal Fibroblast and Corneal Limbal Epithelium. PLoS 
ONE. 2012; 7: e45435.

43.	Yu D, Chen M, Sun X, Ge J. Differentiation of mouse induced pluripotent stem 
cells into corneal epithelial-like cells. Cell Biol Int. 2013; 37: 87-94.

44.	Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma 
formation by human embryonic stem cells: Evaluation of essential parameters 
for future safety studies. Stem Cell Research. 2009; 2: 198-210.

45.	Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH. Lessons from human 
teratomas to guide development of safe stem cell therapies. Nat Biotechnol. 
2012; 30: 849-857.

46.	Boyd AS, Rodrigues NP, Lui KO, Fu X, Xu Y. Concise review: Immune 
recognition of induced pluripotent stem cells. Stem Cells. 2012; 30: 797-803.

47.	Barbero A, Ploegert S, Heberer M, Martin. Plasticity of clonal populations of 
dedifferentiated adult human articular chondrocytes. Arthritis & Rheumatism. 
2003; 48: 1315-1325.

48.	Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, et al. A 
Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells 
and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem 
Cells Transl Med. 2015; 4: 1052-1063.

49.	Liu Q, Hu C-H, Zhou C-H, Cui X-X, Yang K, Deng C, et al. DKK1 rescues 
osteogenic differentiation of mesenchymal stem cells isolated from 
periodontal ligaments of patients with diabetes mellitus induced periodontitis. 
Scientific Reports. 2015; 5: 13142.

50.	Santos JM, Camões SP, Filipe E, Cipriano M, Barcia RN, Filipe M, et al. 
Three-dimensional spheroid cell culture of umbilical cord tissue-derived 
mesenchymal stromal cells leads to enhanced paracrine induction of wound 
healing. Stem Cell Research & Therapy. 2015; 6: 90.

51.	Gu S, Xing C, Han J, Tso MO, Hong J. Differentiation of rabbit bone marrow 
mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol 
Vis. 2009; 15: 99-107.

52.	Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C, et al. Polysaccharide hydrogel 
combined with mesenchymal stem cells promotes the healing of corneal 
alkali burn in rats. PLoS One. 2015; 10: e0119725.

53.	Alio del Barrio JL, Chiesa M, Garagorri N, Garcia-Urquia N, Fernandez-
Delgado J, Bataille L, et al. Acellular human corneal matrix sheets seeded 
with human adipose-derived mesenchymal stem cells integrate functionally 
in an experimental animal model. Experimental Eye Research. 2015; 132: 
91-100.

http://www.ncbi.nlm.nih.gov/pubmed/20673588
http://www.ncbi.nlm.nih.gov/pubmed/20673588
http://www.ncbi.nlm.nih.gov/pubmed/20673588
http://www.ncbi.nlm.nih.gov/pubmed/10501425
http://www.ncbi.nlm.nih.gov/pubmed/10501425
http://www.ncbi.nlm.nih.gov/pubmed/10501425
http://www.ncbi.nlm.nih.gov/pubmed/17465740
http://www.ncbi.nlm.nih.gov/pubmed/17465740
http://www.ncbi.nlm.nih.gov/pubmed/20579250
http://www.ncbi.nlm.nih.gov/pubmed/20579250
http://www.ncbi.nlm.nih.gov/pubmed/15745776
http://www.ncbi.nlm.nih.gov/pubmed/15745776
http://www.ncbi.nlm.nih.gov/pubmed/15745776
http://www.ncbi.nlm.nih.gov/pubmed/10393033
http://www.ncbi.nlm.nih.gov/pubmed/10393033
http://www.ncbi.nlm.nih.gov/pubmed/10393033
http://www.ncbi.nlm.nih.gov/pubmed/10393033
http://www.ncbi.nlm.nih.gov/pubmed/15728534
http://www.ncbi.nlm.nih.gov/pubmed/15728534
http://www.ncbi.nlm.nih.gov/pubmed/15728534
http://www.ncbi.nlm.nih.gov/pubmed/21308743
http://www.ncbi.nlm.nih.gov/pubmed/21308743
http://www.ncbi.nlm.nih.gov/pubmed/21308743
http://www.ncbi.nlm.nih.gov/pubmed/23725042
http://www.ncbi.nlm.nih.gov/pubmed/23725042
http://www.ncbi.nlm.nih.gov/pubmed/23725042
http://www.ncbi.nlm.nih.gov/pubmed/17719371
http://www.ncbi.nlm.nih.gov/pubmed/17719371
http://www.ncbi.nlm.nih.gov/pubmed/17719371
http://www.ncbi.nlm.nih.gov/pubmed/17719371
http://www.ncbi.nlm.nih.gov/pubmed/25789694
http://www.ncbi.nlm.nih.gov/pubmed/25789694
http://www.ncbi.nlm.nih.gov/pubmed/25789694
http://www.ncbi.nlm.nih.gov/pubmed/20573916
http://www.ncbi.nlm.nih.gov/pubmed/20573916
http://www.ncbi.nlm.nih.gov/pubmed/20573916
http://www.ncbi.nlm.nih.gov/pubmed/23619929
http://www.ncbi.nlm.nih.gov/pubmed/23619929
http://www.ncbi.nlm.nih.gov/pubmed/23619929
http://www.ncbi.nlm.nih.gov/pubmed/24174130
http://www.ncbi.nlm.nih.gov/pubmed/24174130
http://www.ncbi.nlm.nih.gov/pubmed/24174130
http://www.ncbi.nlm.nih.gov/pubmed/24174130
http://www.ncbi.nlm.nih.gov/pubmed/23878143
http://www.ncbi.nlm.nih.gov/pubmed/23878143
http://www.ncbi.nlm.nih.gov/pubmed/21292771
http://www.ncbi.nlm.nih.gov/pubmed/21292771
http://www.ncbi.nlm.nih.gov/pubmed/21292771
http://www.ncbi.nlm.nih.gov/pubmed/21920772
http://www.ncbi.nlm.nih.gov/pubmed/21920772
http://www.ncbi.nlm.nih.gov/pubmed/21920772
http://www.ncbi.nlm.nih.gov/pubmed/10937561
http://www.ncbi.nlm.nih.gov/pubmed/10937561
http://www.ncbi.nlm.nih.gov/pubmed/10937561
http://www.ncbi.nlm.nih.gov/pubmed/10937561
http://www.ncbi.nlm.nih.gov/pubmed/15377551
http://www.ncbi.nlm.nih.gov/pubmed/15377551
http://www.ncbi.nlm.nih.gov/pubmed/15377551
http://www.ncbi.nlm.nih.gov/pubmed/15377551
http://www.ncbi.nlm.nih.gov/pubmed/24590515
http://www.ncbi.nlm.nih.gov/pubmed/24590515
http://www.ncbi.nlm.nih.gov/pubmed/24590515
http://www.ncbi.nlm.nih.gov/pubmed/24590515
http://www.ncbi.nlm.nih.gov/pubmed/19373264
http://www.ncbi.nlm.nih.gov/pubmed/19373264
http://www.ncbi.nlm.nih.gov/pubmed/19373264
http://www.ncbi.nlm.nih.gov/pubmed/21571372
http://www.ncbi.nlm.nih.gov/pubmed/21571372
http://www.ncbi.nlm.nih.gov/pubmed/21571372
http://www.ncbi.nlm.nih.gov/pubmed/17255521
http://www.ncbi.nlm.nih.gov/pubmed/17255521
http://www.ncbi.nlm.nih.gov/pubmed/17255521
http://www.ncbi.nlm.nih.gov/pubmed/17255521
http://www.ncbi.nlm.nih.gov/pubmed/26285657
http://www.ncbi.nlm.nih.gov/pubmed/26285657
http://www.ncbi.nlm.nih.gov/pubmed/26285657
http://www.ncbi.nlm.nih.gov/pubmed/26218149
http://www.ncbi.nlm.nih.gov/pubmed/26218149
http://www.ncbi.nlm.nih.gov/pubmed/26218149
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://www.ncbi.nlm.nih.gov/pubmed/23029008
http://www.ncbi.nlm.nih.gov/pubmed/23029008
http://www.ncbi.nlm.nih.gov/pubmed/23029008
http://www.ncbi.nlm.nih.gov/pubmed/23029008
http://www.ncbi.nlm.nih.gov/pubmed/23339091
http://www.ncbi.nlm.nih.gov/pubmed/23339091
http://www.ncbi.nlm.nih.gov/pubmed/19393593
http://www.ncbi.nlm.nih.gov/pubmed/19393593
http://www.ncbi.nlm.nih.gov/pubmed/19393593
http://www.ncbi.nlm.nih.gov/pubmed/22965062
http://www.ncbi.nlm.nih.gov/pubmed/22965062
http://www.ncbi.nlm.nih.gov/pubmed/22965062
http://www.ncbi.nlm.nih.gov/pubmed/22419544
http://www.ncbi.nlm.nih.gov/pubmed/22419544
http://www.ncbi.nlm.nih.gov/pubmed/12746904
http://www.ncbi.nlm.nih.gov/pubmed/12746904
http://www.ncbi.nlm.nih.gov/pubmed/12746904
http://www.ncbi.nlm.nih.gov/pubmed/26185258
http://www.ncbi.nlm.nih.gov/pubmed/26185258
http://www.ncbi.nlm.nih.gov/pubmed/26185258
http://www.ncbi.nlm.nih.gov/pubmed/26185258
http://www.nature.com/articles/srep13142
http://www.nature.com/articles/srep13142
http://www.nature.com/articles/srep13142
http://www.nature.com/articles/srep13142
http://www.ncbi.nlm.nih.gov/pubmed/25956381
http://www.ncbi.nlm.nih.gov/pubmed/25956381
http://www.ncbi.nlm.nih.gov/pubmed/25956381
http://www.ncbi.nlm.nih.gov/pubmed/25956381
http://www.ncbi.nlm.nih.gov/pubmed/19156227
http://www.ncbi.nlm.nih.gov/pubmed/19156227
http://www.ncbi.nlm.nih.gov/pubmed/19156227
http://www.ncbi.nlm.nih.gov/pubmed/25789487
http://www.ncbi.nlm.nih.gov/pubmed/25789487
http://www.ncbi.nlm.nih.gov/pubmed/25789487
http://www.ncbi.nlm.nih.gov/pubmed/25625506
http://www.ncbi.nlm.nih.gov/pubmed/25625506
http://www.ncbi.nlm.nih.gov/pubmed/25625506
http://www.ncbi.nlm.nih.gov/pubmed/25625506
http://www.ncbi.nlm.nih.gov/pubmed/25625506


J Stem Cells Res, Rev & Rep 2(1): id1020 (2015)  - Page - 07

Bakiah Shaharuddin Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

54.	Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, 
Petrakis S, et al. Mesenchymal stem cells improve healing of the cornea after 
alkali injury. Graefe’s Archive for Clinical and Experimental Ophthalmology. 
2015; 253: 1121-1135.

55.	Levis HJ, Massie I, Dziasko MA, Kaasi A, Daniels JT. Rapid tissue engineering 
of biomimetic human corneal limbal crypts with 3D niche architecture. 
Biomaterials. 2013; 34: 8860-8868.

56.	Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, et al. 
Autologous fibrin-cultured limbal stem cells permanently restore the corneal 
surface of patients with total limbal stem cell deficiency. Transplantation. 
2001; 72: 1478-1485.

57.	Cai K, Gierman TM, Hotta J, Stenland CJ, Lee DC, Pifat DY, et al. Ensuring 
the biologic safety of plasma-derived therapeutic proteins: detection, 
inactivation, and removal of pathogens. BioDrugs. 2005; 19: 79-96.

58.	Han B, Schwab IR, Madsen TK, Isseroff RR. A fibrin-based bioengineered 
ocular surface with human corneal epithelial stem cells. Cornea. 2002; 21: 
505-510.

59.	Saw VP, Minassian D, Dart JK, Ramsay A, Henderson H, Poniatowski S, et 
al. Amniotic membrane transplantation for ocular disease: a review of the first 
233 cases from the UK user group. Br J Ophthalmol. 2007; 91: 1042-1047.

60.	Shimmura S, Shimazaki J, Ohashi Y, Tsubota K. Antiinflammatory effects 
of amniotic membrane transplantation in ocular surface disorders. Cornea. 
2001; 20: 408-413.

61.	Tseng SC. Amniotic membrane transplantation for ocular surface 
reconstruction. Biosci Rep. 2001; 21: 481-489.

62.	Kim JC, Tseng SCG. The effects on inhibition of corneal neovascularization 
after human amniotic membrane transplantation in severely damaged rabbit 
corneas. Korean J Ophthalmol. 1995; 9: 32-46.

63.	Tseng SCG, Li D-Q, Ma X. Suppression of transforming growth factor-beta 
isoforms, TGF-ß receptor type II, and myofibroblast differentiation in cultured 
human corneal and limbal fibroblasts by amniotic membrane matrix. Journal 
of Cellular Physiology. 1999; 179: 325-335.

64.	Darouiche RO. Treatment of infections associated with surgical implants. N 
Engl J Med. 2004; 350: 1422-1429.

65.	Bobba S, Chow S, Watson S, Di Girolamo N. Clinical outcomes of xeno-free 
expansion and transplantation of autologous ocular surface epithelial stem 
cells via contact lens delivery: a prospective case series. Stem Cell Res Ther. 
2015; 6: 23.

66.	Wright B, Mi S, Connon CJ. Towards the use of hydrogels in the treatment of 
limbal stem cell deficiency. Drug Discov Today. 2013; 18: 79-86.

67.	Hatami-Marbini H, Rahimi A. Interrelation of Hydration, Collagen Cross-
Linking Treatment, and Biomechanical Properties of the Cornea. Curr Eye 
Res. 2015.

68.	Abou Neel EA, Cheema U, Knowles JC, Brown RA, Nazhat SN. Use of 
multiple unconfined compression for control of collagen gel scaffold density 
and mechanical properties. Soft Matter. 2006; 2: 986-992.

69.	Mi S, Khutoryanskiy VV, Jones RR, Zhu X, Hamley IW, Connon CJ. 
Photochemical cross-linking of plastically compressed collagen gel produces 
an optimal scaffold for corneal tissue engineering. Journal of Biomedical 
Materials Research A. 2011; 99: 1-8.

70.	Levis HJ, Menzel-Severing J, Drake RAL, Daniels JT. Plastic Compressed 
Collagen Constructs for Ocular Cell Culture and Transplantation: A New and 
Improved Technique of Confined Fluid Loss. Current Eye Research. 2012; 
1-12.

71.	Wright B, De Bank PA, Luetchford KA, Acosta FR, Connon CJ. Oxidized 
alginate hydrogels as niche environments for corneal epithelial cells. Journal 
of Biomedical Materials Research A. 2014; 102: 3393-3400.

72.	Hoffman AS. Hydrogels for biomedical applications. Advanced Drug Delivery 
Reviews. 2012; 64: 18-23.

73.	Mudera V, Morgan M, Cheema U, Nazhat S, Brown R. Ultra-rapid engineered 
collagen constructs tested in an in vivo nursery site. Journal of Tissue 

Engineering and Regenerative Medicine. 2007; 1: 192-198.

74.	Levis HJ, Brown RA, Daniels JT. Plastic compressed collagen as a biomimetic 
substrate for human limbal epithelial cell culture. Biomaterials. 2010; 31: 
7726-7737.

75.	Kureshi AK, Drake RA, Daniels JT. Challenges in the development of a 
reference standard and potency assay for the clinical production of RAFT 
tissue equivalents for the cornea. Regen Med. 2014; 9: 167-177.

76.	James R, Toti US, Laurencin CT, Kumbar SG. Electrospun nanofibrous 
scaffolds for engineering soft connective tissues. Methods Mol Biol. 2011; 
726: 243-258.

77.	Sharma S, Mohanty S, Gupta D, Jassal M, Agrawal AK, Tandon R. Cellular 
response of limbal epithelial cells on electrospun poly-e-caprolactone 
nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro 
study. Molecular Vision. 2011; 17: 2898-2910.

78.	Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubinova S, 
et al. Treatment of ocular surface injuries by limbal and mesenchymal stem 
cells growing on nanofiber scaffolds. Cell Transplant. 2010; 19: 1281-1290.

79.	Liu J, Lawrence BD, Liu A, Schwab IR, Oliveira LA, Rosenblatt MI. Silk Fibroin 
as a Biomaterial Substrate for Corneal Epithelial Cell Sheet GenerationSF 
as a Biomaterial Substrate. Investigative Ophthalmology & Visual Science. 
2012; 53: 4130-4138.

80.	Bray LJ, George KA, Suzuki S, Chirila TV, Harkin DG. Fabrication of a 
corneal-limbal tissue substitute using silk fibroin. Methods Mol Biol. 2013; 
1014: 165-178.

81.	Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction. 
Biomaterials. 2011; 32: 3375-3386.

82.	Lynch AP, Ahearne M. Strategies for developing decellularized corneal 
scaffolds. Exp Eye Res. 2013; 108: 42-47.

83.	Gonzalez-Andrades M, Cardona JdlC, Ionescu A, Campos A, Perez MDM, 
Alaminos M. Generation of bioengineered corneas with decellularized 
xenografts and human keratocytes. Invest Ophthalmol Vis Sci. 2011; 52: 
215-222.

84.	Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, et al. 
Preparation and characterization of decellularized cornea using high-
hydrostatic pressurization for corneal tissue engineering. Biomaterials. 2010; 
31: 3941-3948.

85.	Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et 
al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed 
of Autologous Oral Mucosal Epithelium. New England Journal of Medicine. 
2004; 351: 1187-1196.

86.	Shimizu H, Ohashi K, Utoh R, Ise K, Gotoh M, Yamato M, et al. Bioengineering 
of a functional sheet of islet cells for the treatment of diabetes mellitus. 
Biomaterials. 2009; 30: 5943-5949.

87.	Ohashi K, Tatsumi K, Tateno C, Kataoka M, Utoh R, Yoshizato K, et al. Liver 
tissue engineering utilizing hepatocytes propagated in mouse livers in vivo. 
Cell Transplant. 2012; 21: 429-436.

88.	Haraguchi Y, Shimizu T, Matsuura K, Sekine H, Tanaka N, Tadakuma K, et 
al. Cell sheet technology for cardiac tissue engineering. Methods Mol Biol. 
2014; 1181: 139-155.

89.	Bardag-Gorce F, Oliva J, Wood A, Hoft R, Pan D, Thropay J, et al. Carrier-
free Cultured Autologous Oral Mucosa Epithelial Cell Sheet (CAOMECS) 
for Corneal Epithelium Reconstruction: A Histological Study. The Ocular 
Surface. 2015; 13: 150-163.

90.	Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, et al. Cultured 
Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) Transplantation 
for the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency. 
Investigative Ophthalmology & Visual Science. 2012; 53: 1325-1331.

91.	Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, et al. 
Functional human corneal endothelial cell sheets harvested from temperature-
responsive culture surfaces. FASEB J. 2006; 20: 392-394.

92.	Yaji N, Yamato M, Yang J, Okano T, Hori S. Transplantation of tissue-

http://www.ncbi.nlm.nih.gov/pubmed/26002143
http://www.ncbi.nlm.nih.gov/pubmed/26002143
http://www.ncbi.nlm.nih.gov/pubmed/26002143
http://www.ncbi.nlm.nih.gov/pubmed/26002143
http://www.ncbi.nlm.nih.gov/pubmed/23968855
http://www.ncbi.nlm.nih.gov/pubmed/23968855
http://www.ncbi.nlm.nih.gov/pubmed/23968855
http://www.ncbi.nlm.nih.gov/pubmed/11707733
http://www.ncbi.nlm.nih.gov/pubmed/11707733
http://www.ncbi.nlm.nih.gov/pubmed/11707733
http://www.ncbi.nlm.nih.gov/pubmed/11707733
http://www.ncbi.nlm.nih.gov/pubmed/15807628
http://www.ncbi.nlm.nih.gov/pubmed/15807628
http://www.ncbi.nlm.nih.gov/pubmed/15807628
http://www.ncbi.nlm.nih.gov/pubmed/12072727
http://www.ncbi.nlm.nih.gov/pubmed/12072727
http://www.ncbi.nlm.nih.gov/pubmed/12072727
http://www.ncbi.nlm.nih.gov/pubmed/17314154
http://www.ncbi.nlm.nih.gov/pubmed/17314154
http://www.ncbi.nlm.nih.gov/pubmed/17314154
http://www.ncbi.nlm.nih.gov/pubmed/11333331
http://www.ncbi.nlm.nih.gov/pubmed/11333331
http://www.ncbi.nlm.nih.gov/pubmed/11333331
http://www.ncbi.nlm.nih.gov/pubmed/11900323
http://www.ncbi.nlm.nih.gov/pubmed/11900323
http://www.ncbi.nlm.nih.gov/pubmed/7674551
http://www.ncbi.nlm.nih.gov/pubmed/7674551
http://www.ncbi.nlm.nih.gov/pubmed/7674551
http://www.ncbi.nlm.nih.gov/pubmed/10228951
http://www.ncbi.nlm.nih.gov/pubmed/10228951
http://www.ncbi.nlm.nih.gov/pubmed/10228951
http://www.ncbi.nlm.nih.gov/pubmed/10228951
http://www.ncbi.nlm.nih.gov/pubmed/15070792
http://www.ncbi.nlm.nih.gov/pubmed/15070792
http://www.ncbi.nlm.nih.gov/pubmed/25889475
http://www.ncbi.nlm.nih.gov/pubmed/25889475
http://www.ncbi.nlm.nih.gov/pubmed/25889475
http://www.ncbi.nlm.nih.gov/pubmed/25889475
http://www.ncbi.nlm.nih.gov/pubmed/22846850
http://www.ncbi.nlm.nih.gov/pubmed/22846850
http://www.ncbi.nlm.nih.gov/pubmed/26126201
http://www.ncbi.nlm.nih.gov/pubmed/26126201
http://www.ncbi.nlm.nih.gov/pubmed/26126201
http://pubs.rsc.org/en/Content/ArticleLanding/2006/SM/b609784g
http://pubs.rsc.org/en/Content/ArticleLanding/2006/SM/b609784g
http://pubs.rsc.org/en/Content/ArticleLanding/2006/SM/b609784g
http://www.ncbi.nlm.nih.gov/pubmed/21732526
http://www.ncbi.nlm.nih.gov/pubmed/21732526
http://www.ncbi.nlm.nih.gov/pubmed/21732526
http://www.ncbi.nlm.nih.gov/pubmed/21732526
http://www.ncbi.nlm.nih.gov/pubmed/24142706
http://www.ncbi.nlm.nih.gov/pubmed/24142706
http://www.ncbi.nlm.nih.gov/pubmed/24142706
http://www.ncbi.nlm.nih.gov/pubmed/18038411
http://www.ncbi.nlm.nih.gov/pubmed/18038411
http://www.ncbi.nlm.nih.gov/pubmed/18038411
http://www.ncbi.nlm.nih.gov/pubmed/20674002
http://www.ncbi.nlm.nih.gov/pubmed/20674002
http://www.ncbi.nlm.nih.gov/pubmed/20674002
http://www.ncbi.nlm.nih.gov/pubmed/24750058
http://www.ncbi.nlm.nih.gov/pubmed/24750058
http://www.ncbi.nlm.nih.gov/pubmed/24750058
http://www.ncbi.nlm.nih.gov/pubmed/21424454
http://www.ncbi.nlm.nih.gov/pubmed/21424454
http://www.ncbi.nlm.nih.gov/pubmed/21424454
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224839/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224839/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224839/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224839/
http://www.ncbi.nlm.nih.gov/pubmed/20573307
http://www.ncbi.nlm.nih.gov/pubmed/20573307
http://www.ncbi.nlm.nih.gov/pubmed/20573307
http://www.ncbi.nlm.nih.gov/pubmed/22661480
http://www.ncbi.nlm.nih.gov/pubmed/22661480
http://www.ncbi.nlm.nih.gov/pubmed/22661480
http://www.ncbi.nlm.nih.gov/pubmed/22661480
http://www.ncbi.nlm.nih.gov/pubmed/23690012
http://www.ncbi.nlm.nih.gov/pubmed/23690012
http://www.ncbi.nlm.nih.gov/pubmed/23690012
http://www.ncbi.nlm.nih.gov/pubmed/21316757
http://www.ncbi.nlm.nih.gov/pubmed/21316757
http://www.ncbi.nlm.nih.gov/pubmed/23287438
http://www.ncbi.nlm.nih.gov/pubmed/23287438
http://www.ncbi.nlm.nih.gov/pubmed/20739475
http://www.ncbi.nlm.nih.gov/pubmed/20739475
http://www.ncbi.nlm.nih.gov/pubmed/20739475
http://www.ncbi.nlm.nih.gov/pubmed/20739475
http://www.ncbi.nlm.nih.gov/pubmed/20163852
http://www.ncbi.nlm.nih.gov/pubmed/20163852
http://www.ncbi.nlm.nih.gov/pubmed/20163852
http://www.ncbi.nlm.nih.gov/pubmed/20163852
http://www.ncbi.nlm.nih.gov/pubmed/15371576
http://www.ncbi.nlm.nih.gov/pubmed/15371576
http://www.ncbi.nlm.nih.gov/pubmed/15371576
http://www.ncbi.nlm.nih.gov/pubmed/15371576
http://www.ncbi.nlm.nih.gov/pubmed/19674781
http://www.ncbi.nlm.nih.gov/pubmed/19674781
http://www.ncbi.nlm.nih.gov/pubmed/19674781
http://www.ncbi.nlm.nih.gov/pubmed/22793050
http://www.ncbi.nlm.nih.gov/pubmed/22793050
http://www.ncbi.nlm.nih.gov/pubmed/22793050
http://www.ncbi.nlm.nih.gov/pubmed/25070334
http://www.ncbi.nlm.nih.gov/pubmed/25070334
http://www.ncbi.nlm.nih.gov/pubmed/25070334
http://www.ncbi.nlm.nih.gov/pubmed/25881998
http://www.ncbi.nlm.nih.gov/pubmed/25881998
http://www.ncbi.nlm.nih.gov/pubmed/25881998
http://www.ncbi.nlm.nih.gov/pubmed/25881998
http://www.ncbi.nlm.nih.gov/pubmed/22064987
http://www.ncbi.nlm.nih.gov/pubmed/22064987
http://www.ncbi.nlm.nih.gov/pubmed/22064987
http://www.ncbi.nlm.nih.gov/pubmed/22064987
http://www.ncbi.nlm.nih.gov/pubmed/16339916
http://www.ncbi.nlm.nih.gov/pubmed/16339916
http://www.ncbi.nlm.nih.gov/pubmed/16339916
http://www.ncbi.nlm.nih.gov/pubmed/19036433


J Stem Cells Res, Rev & Rep 2(1): id1020 (2015)  - Page - 08

Bakiah Shaharuddin Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

engineered retinal pigment epithelial cell sheets in a rabbit model. 
Biomaterials. 2009; 30: 797-803.

93.	Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Decrease in 
culture temperature releases monolayer endothelial cell sheets together with 
deposited fibronectin matrix from temperature-responsive culture surfaces. 
Journal of Biomedical Materials Research. 1999; 45: 355-362.

94.	Kushida A, Yamato M, Isoi Y, Kikuchi A, Okano T. A noninvasive transfer 
system for polarized renal tubule epithelial cell sheets using temperature-
responsive culture dishes. Eur Cell Mater. 2005; 10: 23-30.

Citation: Shaharuddin B and Meeson A. Current Perspectives on Tissue Engineering for the Management of 
Limbal Stem Cell Deficiency. J Stem Cells Res, Rev & Rep. 2015; 2(1): 1020.

J Stem Cells Res, Rev & Rep - Volume 2 Issue 1 - 2015
ISSN : 2381-9073 | www.austinpublishinggroup.com 
Shaharuddin et al. © All rights are reserved

http://www.ncbi.nlm.nih.gov/pubmed/19036433
http://www.ncbi.nlm.nih.gov/pubmed/19036433
http://www.ncbi.nlm.nih.gov/pubmed/10321708
http://www.ncbi.nlm.nih.gov/pubmed/10321708
http://www.ncbi.nlm.nih.gov/pubmed/10321708
http://www.ncbi.nlm.nih.gov/pubmed/10321708
http://www.ncbi.nlm.nih.gov/pubmed/16088852
http://www.ncbi.nlm.nih.gov/pubmed/16088852
http://www.ncbi.nlm.nih.gov/pubmed/16088852

	Title
	Abstract
	Abbreviations
	Introduction
	Limbal Stem Cell Deficiency (LSCD)
	Current Perspective on Tissue Engineering for LSC Transplantation
	Clinical Trials for Limbal Stem Cells Transplantation 
	The Outcome of Ex Vivo Expanded Limbal Epithelial Transplantation
	Alternative Sources of Cells 
	Substrates for Cell-Based Therapy
	Biological Substrates
	Fibrin sheet
	Human amniotic membrane
	Contact Lens (CL)
	Collagen
	Plastic compressed collagen
	Nanofibers
	Silk fibroin
	Keratin films

	Emerging Techniques and Future Directions
	Decellularised tissues
	Cell sheet tissue-engineered system

	Conclusion
	References
	Table 1

