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Abstract

Complex pathology of ischemic stroke warrants a combination treatment 
approach that targets multiple pathways in order to provide a general effective 
therapy for stroke. Human umbilical cord blood-derived cells have been used in 
experimental models of injury and disease over the past several years and show 
encouraging leaps toward development of such an all-inclusive treatment. The 
purpose of this review is to highlight the potential use of human umbilical cord 
blood-derived cells in ischemic stroke and to discuss the animal studies which 
were conducted to date in that direction.  
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and agranulocytes of leukocytes (lymphocytes and monocytes) 
constitute the mononuclear cells of HUCB (HUCBCs).

HUCB-HSCs are characterized by their differential expression 
of hematopoietic markers CD34, CD45, and CD133 [2,3]. HUCB-
HSCs can be selectively induced into specific hematopoietic lineages. 
HUCB-nHSCs are characterized by their expression of pluripotency 
markers (Sox2, Oct4, and Nanog), state-specific embryonic 
antigen markers (SSEA-3 and SSEA-4), tumor rejection antigen 
markers (TRA1-60 and TRA1-80), and lacking of hematopoietic 
markers CD34 and CD45 [4]. HUCB-nHSCs possess multipotent 
differentiation potential and have been shown to differentiate in 
various cell types representing the three germ layers. HUCB-MSCs 
show high morphological and molecular similarities to bone marrow 
MSCs including the lacking of hematopoietic surface antigens CD34, 
CD45, and CD133 [5-8]. HUCB-MSCs are characterized by their 
expression of MSC-specific surface markers CD29, CD44, CD73, 
CD105 and vimentin [9]. HUCB-MSCs possess several advantages 
over other types of stem cells including those derived from bone 
marrow [10]. HUCB-MSCs possess multipotent differentiation 
potential and thus can be induced to differentiate into cells of multiple 
lineages such as adipocytes, osteocytes, chondrocytes, myocytes, 
hepatocytes, neurons, astrocytes and oligodendrocytes [10-17]. 
Recent investigations suggested that the HUCB-MSCs harbor a small 
unique population of cells that express pluripotent stem cell markers 
such as Sox2, Oct4, Nanog, ABCG2, and nestin along with MSC 
markers [9]. Although few stem cell types obtained from HUCBCs 
show the expression of pluripotency markers, these cells do not form 
teratomas after transplantation in immuno-compromised mice, the 
current gold standard for determining the pluripotency of human 
cell lines. Therefore, these cells do not satisfy the current criteria for 
defining them as pluripotent stem cells [18]. 

Why ischemic stroke is the primary disease target for 
stem cell therapy? 

The goal of any cell-based therapy is to replace and/or repair 
dead or diseased cells. Therapy with stem cells can target multiple 
mechanisms/pathways associated with the pathology of a disease 
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non-hematopoietic stem cells; MSCs: Mesenchymal stem cells; 
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artery occlusion; tPA: tissue plasminogen activator; ROA: Route 
of administration; BBB: Blood brain barrier; SH: Spontaneously 
hypertensive; BDNF: Brain-derived neurotrophic factor; VEGF: 
Vascular endothelial growth factor; IFN: Interferon.

Introduction
Globally, fifteen million people suffer from a stroke each year 

and five million stroke patients die with another five million left 
permanently disabled [1]. Stroke is the leading cause of disability and 
has become one of the major challenges to health. Approximately 85% 
of the strokes are ischemic and occur due to thrombosis, embolism 
or stenosis. However, many ischemic strokes occur without a well-
defined etiology and are labeled as cryptogenic. Cryptogenic stroke 
accounts for 30 to 40 percent of ischemic strokes.

Stem cell transplantation offers a promising therapeutic 
strategy for ischemic stroke. In addition to preventing the ongoing 
damage, which has been the focus of conventional therapy, stem cell 
transplantation actually repairs the injured brain. It has emerged as 
a potential regenerative treatment to reduce post-stroke handicap. 
In addition to ethical and moral concerns, limited availability of 
embryonic, fetal, and adult brain-derived neural stem cells has 
prompted the search for alternative sources of stem cells. Human 
umbilical cord blood (HUCB) has emerged as an alternative stem 
cell sources. HUCB is the blood left over in the placenta and in 
the umbilical cord after the birth of the baby. HUCB contains a 
highly heterogeneous mixture of cells, which includes red blood 
cells (erythrocytes), white blood cells (leukocytes), thrombocytes 
(platelets), stem cells, etc. HUCB contains at least three types of stem 
cells; hematopoietic stem cells (HSCs), non-hematopoietic stem cells 
(nHSCs), and mesenchymal stem cells (MSCs). HSCs, nHSCs, MSCs, 
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condition. After an ischemic stroke, the affected brain tissue can be 
described as having two regions, the ischemic core and the penumbra. 
The tissue damage that occurs in the ischemic core is irreversible and 
permanent. Therefore, the cells in the ischemic core are considered 
beyond rescue and the cells in the penumbra are potential targets 
for therapeutic intervention. To date, clinical treatment had not 
emerged from 1026 neuroprotective agents deemed successful 
in animals, reinforcing the perception that “everything works in 
animals but nothing works in people” [19]. Many neuroprotective 
agents that failed in clinical trials are aimed at excitotoxicity and 
oxidative stress. It is quite evident that targeting cell death in the 
ischemic core will have poor prospects compared to targeting cell 
death in the penumbra. Further, any approach targeting a single 
mechanism may not provide a general effective therapy for stroke 
because of its complex pathology. Hence, the best possible option to 
replace the dead tissue in the ischemic core and to reestablish the lost 
neurological function as well as inhibit cell death in the penumbra 
would be stem cell transplantation. 

Current status of drug therapy for ischemic stroke 
Although the US FDA approved the usage of certain antiplatelet 

agents such as aspirin, ticlopidine, clopidogrel and a combination of 
aspirin and dipyridamole for secondary ischemic stroke prevention, 

initial stroke therapy is limited to the FDA-approved clot-busting 
drug, tissue plasminogen activator (tPA), which must be administered 
within a four and half hour window from the onset of symptoms 
[20,21]. Unfortunately, only three to five percent of those who suffer 
a stroke reach the hospital in time to be considered for this treatment. 
Moreover, about half of the patients receiving tPA therapy show little 
or no improvement in functional outcome [22]. In addition, treatment 
with thrombolytics such as tPA present real safety concerns because 
of the increased incidence of secondary hemorrhagic transformation 
and the increased mortality rate in patients especially those who have 
bleeding disorders [23-25]. The major goal of clot-busting therapy 
is to reestablish the blood flow to the previously ischemic brain 
portions and not to address the injury that occurred due to ischemia. 
Reperfusion of the ischemic brain portion further damages the brain 
due to reperfusion injury. Despite decades of research, no clinically 
effective pharmacotherapies exist which can target both ischemia and 
reperfusion injury as well as facilitate cellular functional recovery 
after an ischemic stroke. 

Rationale for the use of HUCBCs in ischemic stroke 
HUCBCs possess several advantages over stem cells from other 

sources [10]. Recently, we showed that these cells survive, migrate and 
transdifferentiate to neuronal cells after their transplantation in animal 

Animal 
Model Stroke Model ROA Dose Time of 

injection Research Outcome Reference

Rat
Transient (2 hour) 

MCAO with a 
monofilament

Intravenous 3x106 cells 1 and 7 days 
after MCAO

Cells entered brain, survived, migrated and 
improved functional recovery after stroke. [36]

Rat Permanent MCAO Intravenous 1x106 cells 24 h after 
MCAO

Behavioral improvement indicated by a decrease 
in spontaneous activity. [59]

Rat Permanent MCAO 
with an embolus

Intrastriatal & 
Intravenous

0.25x106 cells 
(Intrastriatal)

1x106 cells  
(Intravenous)

24 h after 
MCAO

Intravenous delivery may be more effective than 
striatal delivery in producing long-term functional 

benefits.
[37]

Rat Permanent MCAO 
with a monofilament Intravenous 1x104 to 3-5x107 cells in 

500 μl over 5 min
24 h after 

MCAO

Significant recovery noticed in behavioral 
performance at doses ≥ 1x106 cells. [38]

Rat Transient (1 hour) 
MCAO with a suture Intravenous 0.2x106 cells During 

MCAO

Administered cells were not detected in the 
ischemic brains. However, the treatment reduced 

cerebral infarcts and improved behavioral function.
[42]

Rat Permanent MCAO 
with a monofilament Intravenous 1x107 cells in 500 μl 24 h after 

MCAO

Increased neuroprotection and decreased 
inflammation [39]

Rat
Transient (1 hour) 

MCAO with a thread 
occluder

Intravenous 1x106 cells (CD34-
negative) 

48 h after 
MCAO

Reduction in infarct volume and improvement 
in placement and stepping tests which could be 

mediated by trophic actions  
[40]

Rat Permanent MCAO 
with a monofilament Intravenous 1x107 cells in 500 μl 24 h after 

MCAO

Reduction in infarct size is associated with rescue 
of the spleen weight and splenic CD8+ T-cell 

counts as well as increased production of IL-10 
while decreasing IFNγ  

[41]

Rat Permanent MCAO 
with a monofilament Intravenous 1x106 cells in 500 μl 48 h after 

MCAO

Resulted in both behavioral and physiological 
recovery with diminished or lack of granulocyte 

and monocyte infiltration and astrocytic and 
microglial activation. 

[43]

Rat
Transient (2 hour) 

MCAO with a 
filament

Intravenous 1-5x107 cells 24 h after 
MCAO

Only few cells were detected in the ischemic brain 
regions. Neither the histological outcome nor the 

functional recovery was improved.
[45]

SH
Rat

Permanent MCAO 
by thermo occlusion Intravenous 8x106 cells/kg body 

weight
24 h after 

MCAO
Neither the infarct volume nor caspase-3 activity 

was significantly affected. [46]

Rat
Transient (2 hour) 

MCAO with a 
monofilament

Intravenous 10x106 cells (AC133+ 
EPCs from HUCBCs) 

24 h after 
MCAO

Administered cells migrated to the ischemic brain 
and exerted therapeutic effect on the extent of 

tissue damage, regeneration, and time course of 
stroke resolution.

[44]

Table 1: Studies that utilized HUCBCs in animal models of ischemic stroke.

HUCBCs-Human umbilical cord blood-derived cells; EPCs-Endothelial progenitor cells; MCAO – Middle cerebral artery occlusion; ROA – Route of Administration; 
SH-Spontaneously hypertensive
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spinal cords or brains [10,16,17,26]. We also demonstrated the potential 
of these cells in modulating the spinal cord microenvironment and 
improving the locomotor recovery of spinal cord injured rats [16,26-
29]. Based on our studies, we understand that HUCBSCs treatment 
inhibited apoptosis, inhibited myelin degradation, remyelinated the 
damaged axons and thereby contributed to the functional recovery 
of spinal cord injured rats. Moreover, intracranial implantation of 
these cells in shiverer mice myelinated the hypomyelinated axons 
and significantly reduced their shivering [10]. Supported by in 
vitro and pre-clinical studies, HUCBCs have been utilized in many 
different clinical trials aiming to treat a wide range of diseases and 
disorders [4]. The pathophysiology of ischemic stroke is extremely 
complex and involves numerous processes, including: energy failure, 
excitotoxicity, oxidative stress, disruption of the blood-brain barrier 
(BBB), inflammation, necrosis, apoptosis etc. Studies that utilized 
HUCBCs improved the stroke outcome in animal models of ischemic 
stroke by multiple mechanisms. All these studies are discussed in 
detail in the subsequent sections of this review. 

How HUCBCs are recruited to the infarct site after their 
systemic administration? 

Delivery of viable cells to the damaged brain tissue is the first 
thing to be considered with any cell-based therapy. Ideally these 
cells or the neurotrophic factors they secrete will re-establish the 
damaged host neural connections, either by forming new networks 
or reconstructing the old pathways.

 After intravenous administration, HUCBCs are recruited to the 
infarct site possibly by passive diffusion across a damaged BBB. Early 

disruption of BBB begins within the first three hours after MCAO 
[30]. The second peak of BBB disruption is between 24 and 72 
hours, in case of transient occlusion model, which is associated with 
reperfusion injury [31]. In case of permanent MCAO model, however, 
the second peak of BBB disruption peaks approximately at six days 
after MCAO [32]. HUCBCs are also recruited to the site of injury by 
chemokines when their expression reaches peak level, which usually 
occur at 48 hours after stroke [33-35]. Administration of HUCBCs 
at early time points after ischemia may compromise with the body’s 
early natural attempt to fight against injury and lead to exacerbation 
of the damage. Treatment with cells that is initiated too early or too 
late may not help recovery. The timing of treatment with HUCBCs is 
more important than the dose. Based on the reports discussed above, 
it appears that the optimal timing of HUCBCs treatment is 48 hours 
after transient focal cerebral ischemia.      

Effect of cell type, dose, route and time of administration 
on stroke outcome in animal models

Application of HUCBCs in animal models of ischemic stroke 
has been initiated more than a decade ago. Recent research reports 
indicated the usage of HUCBCs, which also include HSCs, nHSCs, 
and MSCs derived from HUCB. The summary of these studies, 
including the research outcome is detailed in Table 1. All the studies 
listed in Table 1 used a rat model of transient or permanent middle 
cerebral artery occlusion (MCAO) and administered the cells 
intravenously within seven days after MCAO procedure. The number 
of cells administered range from 1x104 to 5x107. Intravenously 
administered HUCBCs after ischemic stroke entered the rat 

Animal 
Model Stroke Model ROA Dose Time of 

injection Research Outcome Reference

Canine
MCAO through 

injection of thrombic 
emboli

Intraarterial 1x106 cells in 1 ml 1 day after 
MCAO

Cell therapy significantly reduced the infarct 
volume. Cells were differentiated into neurons and 

astrocytes and secreted BDNF and VEGF. 
[47]

Rat
Transient (2 hour) 

MCAO with a 
monofilament

Intrathecal & 
Intravenous

0.5x106 / 1x106 cells 
(intrathecal)

0.5x106 / 1x106 cells 
(intravenous)

3 days after 
MCAO

Neurological recovery was better with 1x106 dose 
irrespective of the route of administration.

Significant reduction in ischemic damage 
noticed at 0.5 x 106 dose (intrathecal but not for 

intravenous)

[48]

New-born 
Rat

Permanent MCAO 
with a monofilament Intra-ventricular 1x105 cells in 10 μl 6 h after MCAO

Cell transplantation significantly improved survival 
and functional recovery as well as reduced infarct 

volume. 
[49]

Rat
Transient (2 hour) 

MCAO with a 
monofilament

Intravenous 0.25x106 /1x106 cells 
in 500 μl

1 day after 
MCAO

Treatment with hUCBSCs reduced brain damage 
by inhibiting apoptosis and down-regulating the 

apoptotic pathway molecules.
[55]

Rabbit
Transient (2 hour) 

MCAO with a 
monofilament

Intravenous 5x106 cells in 2 ml
Within few 

minutes after 
MCAO

Treatment suppressed the inflammatory 
responses and neuronal apoptosis. [54]

Table 2: Studies that utilized HUCB-MSCs in animal models of ischemic stroke.

HUCB-Human umbilical cord blood; MSCs-Mesenchymal stem cells; MCAO-Middle cerebral artery occlusion; ROA-Route of Administration; BDNF-Brain-derived 
neurotrophic factor; VEGF-Vascular endothelial growth factor

Animal 
Model Stroke Model ROA Dose Time of 

injection Research Outcome Reference

Mouse
Permanent MCAO by 
ligation of the distal 

portion of MCA
Intravenous 0.5x106 cells in 

100 μl 
48 hours after 

MCAO
Cell therapy promoted an environment conducive 

to neovascularization of ischemic brain [50]

Rat
Transient (1.5 hour) 
ischemia by three-

vessel ligation

Intracerebral 0.2x106 cells in 3-5 
μl/area in 3 cortical 

areas

7 days after 
ischemia

Implantation of the cells that were subjected 
to hypoxia-preconditioning improved stroke 

outcome, cerebral blood flow into the ischemic 
brain via induction of angiogenesis, facilitated 
proliferation of endogenous neural progenitor 

cells and promoted neurite outgrowth. 

[51]

Table 3: Studies that utilized HUCB-HSCs in animal models of ischemic stroke.

HUCB-Human umbilical cord blood; HSCs-Hematopoietic stem cells; MCAO-Middle cerebral artery occlusion; ROA-Route of Administration
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brain, survived, migrated, improved the neurological/functional 
recovery, and reduced the infarct size [36-44]. In contrast, systemic 
administration of HUCBCs did not improve histological outcome or 
functional recovery in MCAO subjected rats [45]. These authors also 
have reported that only few of the administered cells were detected in 
the ipsilateral hemisphere. However, we cannot attribute this finding 
as a reason for the lack of improvement in histological outcome 
and functional recovery because several other research groups 
reported the presence of administered cells in ischemic brain regions. 
Reduced infarcts and improved behavioral function in the absence 
of administered cells in the ipsilateral hemisphere was also reported 
[36,42,44]. In addition, intravenous administration of HUCBCs 
in a spontaneously hypertensive rat MCAO model failed to reduce 
the infarct volume [46]. However, the absence of positive outcome 
could be due to the divergent pathophysiological sequences in these 
rats compared to commonly used rat strains [46]. Therefore, prior to 
initiating the clinical studies with HUCBCs in stroke patients, their 
therapeutic potential in animal models that mimic the most common 
comorbidities of stroke patients should be investigated.

The remaining studies that utilized HUCB-MSCs in ischemic 
stroke to date are summarized in Table 2. Although these studies 
have commonly employed the MCAO procedure, different animal 
models were used including canine, rabbit, adult rat, and newborn 
rat. Further, in these studies, HUCB-MSCs are administered at 
different time points (within few minutes to three days after MCAO 
procedure) by various routes of administration, which include 
intravenous, intraventricular, intrathecal and intraarterial. The 
number of cells administered in these studies range from 1x105 to 
5x106. Despite the differences in animal models, route, and time of 
administration, HUCB-MSCs treatment significantly reduced the 
infarct size, improved survival and offered neurological/functional 
recovery of MCAO-subjected animals [47-49]. Studies that utilized 
HUCB-HSCs in ischemic stroke to date are summarized in Table 3. 
Administration of these cells in ischemic stroke models improved 
stroke outcome despite the differences in pre-treatment, dose, route 
and time of administration [50,51].

In order to overcome the immune reactions in animals after 
stem cell transplantation several approaches are currently used, 
including immunosuppression of the host animal, the use of 
genetically engineered animals that are immunodeficient, alterations 
in the stem cells and other approaches. The administration of an 
immunosuppressant is not common in all the studies discussed in this 
review. Few research groups administered an immunosuppressant 
drug to animals that were treated with HUCBCs and others did not. 
The results from those studies that used an immunosuppressant 
should be more carefully interpreted because of the involvement of 
immune component in the pathology of ischemic stroke. The use of 
immunosuppressant may not be a requirement in case of stem cells 
obtained from HUCBCs because they are immature as well as elicit a 
lower incidence of graft rejection, graft versus host disease (GvHD), 
and post-transplant infections, even though they primarily come 
from an allogenic origin [52,53].           

Possible underlying mechanisms of HUCBCs-mediated 
neuroprotection after ischemic stroke

Differentiation and paracrine signaling have both been implicated 
as mechanisms by which stem cells improve tissue repair. Stem cell 

differentiation contributes by regenerating damaged tissue, whereas 
paracrine signaling regulates the local cellular responses to injury such 
as cell survival, migration and gene expression as well as secretion of 
known mediators of tissue repair including growth factors, cytokines 
and chemokines. It is also reported that the central nervous system 
availability of grafted HUCBCs is not a prerequisite for acute 
neuroprotection after ischemic stroke provided that the therapeutic 
molecules such as neurotrophic factors secreted by these cells could 
cross the BBB [42]. Various studies that utilized HUCBCs which were 
discussed in the subsequent sections of this review suggest that both 
differentiation and paracrine signaling mechanisms contribute to the 
positive stroke outcome in animal models of ischemic stroke.

Administration of HUCBCs inhibited the stroke-induced 
infiltration by reducing the number of CD45/CD11b-positive cells 
(microglia/macrophage) and CD45/B220-positive cells (B cells) and 
abrogated the levels of ischemia-induced pro-inflammatory cytokines 
such as TNFα and IL-1β while increasing the concentration of anti-
inflammatory cytokines such as IL-10 [39]. The same research group 
reported another novel immuno-modulatory mechanism by which 
HUCBCs mediate protection in the rat MCAO model of stroke. 
According to their report, HUCBCs treatment rescued the spleen 
weight and splenic CD8+ T-cell counts as well as increased the 
production of IL-10 while decreasing IFNγ [41]. In another study, 
HUCBCs treatment offered neuroprotection by trophic actions that 
could result in the reorganization of host nerve fiber connections 
within the injured brain [40]. These restorative effects mediated 
by trophic actions after HUCBCs treatment could be attributed 
to nHSCs and MSCs present in the HUCBCs, because HUCBCs 
utilized for this study were CD34-negative. Treatment with HUCB-
MSCs in a rabbit model of focal cerebral ischemia suppressed 
the ischemia-induced increases of IL-1β, IL-6 and TNFα levels in 
both the serum and peri-ischemic brain tissues within six hours of 
ischemia-reperfusion [54]. HUCB-MSCs treatment was also reported 
to suppress the inflammatory responses and neuronal apoptosis 
[54]. In another study that specifically utilized HUCB-HSCs, the cell 
therapy promoted an environment conducive to neovascularization 
of ischemic brain [50]. In this study, HUCB-HSCs were administered 
to immunocompromised mice in contrast to other studies, which 
had utilized a rat model. However, in another study, intracerebral 
administration of HUCB-HSCs that were subjected to hypoxia-
preconditioning improved cerebral blood flow into the ischemic brain 
via induction of angiogenesis, facilitated proliferation of endogenous 
neural progenitor cells and promoted neurite outgrowth [51].

Studies that employed HUCB-MSCs revealed that these cells 
differentiated into neurons and astrocytes and secreted several 
growth factors such as brain-derived neurotrophic factor (BDNF) 
and vascular endothelial growth factor (VEGF) after their intra-
arterial administration in a canine MCAO model [47]. In addition, 
majority of the apoptotic pathway molecules, which were upregulated 
after focal cerebral ischemia were downregulated after HUCB-MSCs 
treatment [55,56]. These findings further strengthened our previous 
research results, wherein HUCB-MSCs inhibited neuronal apoptosis 
after their transplantation in the injured rat spinal cords [26]. In 
contrast, HUCBCs treatment did not affect caspase-3 activity in the 
ischemic rat brain [46]. As stated earlier, the reason could be due 
to the divergent pathophysiological sequences in spontaneously 



J Stem Cell Res Transplant 2(1): id1014 (2015)  - Page - 05

Chelluboina B Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

hypertensive rats compared to commonly used rat strains. Although 
the treatment with HUCB-MSCs reduced the apoptotic cell death in 
ischemic penumbra, as stated earlier in this review, the major goal of 
stem cell therapy in ischemic stroke is to replace the dead tissue in the 
ischemic core. Research that investigates the potential of HUCBCs in 
ischemic stroke to cause neurogenesis, synaptic plasticity, and axon 
growth as well as determines the underlying molecular mechanisms 
is still an unmet need. Interestingly, HUCBCs when administered in 
combination with simvastatin increased BDNF/TrkB, Ang1/Tie2 and 
occludin expression, enhanced cell migration into the ischemic brain, 
enhanced vascular remodeling, amplified endogenous angiogenesis, 
synaptic plasticity and axonal growth and thereby improved 
functional outcome after ischemic stroke [57,58]. Summary of these 
studies that utilized HUCBCs in combination with other treatments 
were listed in Table 4.

Despite the mechanism of action, the clinical relevance of 
treatment with HUCBCs for ischemic stroke is obvious, although 
additional research is needed to take this treatment approach from 
bench to bedside. 

Conclusions
Treatment with HUCBCs is an emerging therapeutic approach 

for ischemic stroke. Unlike other treatment approaches, stem 
cell therapy with HUCBCs could enhance recovery even when 
administered many hours/days after ischemic stroke. Although the 
studies discussed in this review highlight the potential of HUCBCs to 
offer neuroprotection after ischemic stroke, well-designed preclinical 
studies in appropriate animal models are still required to investigate 
the optimum time, dose, route and duration of administration as well 
as to understand the underlying molecular mechanisms.    
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