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Abstract

Endothelial progenitor cells (EPC) have rapidly emerged as a potential novel 
therapeutic approach in ischemic diseases. After the initial characterization of 
putative bone marrow-derived endothelial progenitor cells and their potential 
to promote neovascularization and to attenuate ischemic injury, a decade of 
intense preclinical research has led to the EPC-based clinical trials that have 
suggested their safety but with modest results. This review focuses on the role 
of endogenous and exogenous EPC therapy in promoting neovascularization 
in the ischemic settings to illustrate the future directions of EPC in therapeutic 
applications. We also reviewed clinical applications of EPC and potential 
strategies in improving EPC based therapeutics for ischemic tissue repair.
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(Endoglin), c-Kit for human samples[12-15]and receptors like c-Kit 
(CD117), stem cell antigen (Sca-1), and CD34 in combination with 
Flk-1 (vascular endothelial growth factor receptor-2 (VEGFR-2) in 
case of mouse samples [16-18]. Nevertheless, identifying a particular 
combination of markers for isolation of these cells has been a big 
challenge for the researchers in this field.

The origin of non-hematopoietic EPCs (NHEPCs) remains to 
be clarified, but they are generally thought to be derived from non-
hematopoietic tissue resident lineage stem cells or organ blood vessels 
but not likely from HSC [19].

NHEPCs have been shown to be derived from non-hematopoietic 
tissues. A novel cell type endothelial out growth cell (EOC) has been 
shown to be a type of NHEPC, these EOCs are the derived from 
endothelial colony formation assay system developed and reported 
by Yoder’s group and others [20,21]. Unlike hematopoietic EPC, 
EOC readily form tubes in vitro. However, origin and role of EOC 
is still a debatable but appears to be a potential therapeutic regimen 
for neovascularization [22,23]. Recently, Aicher et al.[24], has 

Introduction
For more than a decade now, biology and therapeutic efficacy 

of Endothelial progenitor cells (EPCs) were largely driven by the 
first observations of Asahara et al. in identifying EPCs in adult 
peripheral blood (PB[1] and were shown to derive from bone marrow 
(BM) further migrate and incorporate into foci of physiological or 
pathological neovascularization [2,3]. As a matter of fact, postnatal 
neovascularization was believed to be established by the mechanism 
of ‘‘angiogenesis,’’ by in situ proliferation and migration of pre- 
existing endothelial cells (ECs) [4]. However, the finding that EPCs 
can home to sites of neovascularization and differentiate into ECs in 
situ is consistent with ‘‘vasculogenesis,’’ a critical paradigm has been 
demonstrated in embryonic neovascularization [5] and also shown 
recently for the adult organism in which a pool of progenitor cells 
contributes to postnatal neovascular formation [6]. The discovery of 
EPCs has therefore considerably changed our understanding of adult 
blood vessel formation. Furthermore, we and other groups envisage 
the potential of EPC to improve the clinical applicability in the fight 
against ischemic diseases.

This review focuses on the potential value of EPCs (both 
endogenous and exogenous therapy) as a therapeutic regimen for the 
treatment of ischemic diseases.

Characterizationof EPC
EPCs in circulation can be broadly sub-divided mainly into 

two categories, hematopoietic lineage EPCs and non-hematopoietic 
lineage EPCs (Figure 1). The hematopoietic EPCs originate from BM 
and represent a pro-vasculogenic subpopulation of hematopoietic 
stem cells (HSCs) ([7,9]. The non-hematopoietic EPCs are blood or 
tissue derived entities, exhibiting EC like phenotype [10] or ability to 
differentiate into EC likecells[11].

EPCs and HSCs have been shown to express variety of cell surface 
markers, including membrane receptors like CD31, CD133, (Fetal 
liver kinase-1) Flk- 1, CXC chemokine receptor-4 (CXCR-4) , CD105 
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Figure 1: Mechanism of EPC mediated postnatal neovascularization. 
Circulating EPCs mobilized from BM are recruited into foci of 
neovascularization and contribute to new blood vessel formation.
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shown circulating cells from BM and non-BM help in vasculature, 
demonstrated by the mobilization of c-kit+/CD45- progenitor by a 
parabiosis model from liver and small intestine. In spite of the above 
findings, it is difficult to define EPCs because of the ambiguity in the 
phenotype and characteristics that are fundamental for EPC identity.

EPCs contribute to neovascularization
In the perspective of EPC biology, vasculogenesis mainly 

comprises the de novo blood vessel formation via in situ migration, 
proliferation, differentiation, and/or incorporation of bone marrow 
(BM)-derived EPCs into regenerating vasculature [3]. This fact 
of BM-derived EPCs incorporation into site of physiological or 
pathological neovascularization has been thoroughly validated in 
various animal models. Nevertheless, one well-established model, 
allowing the detection of BM-derived EPCs, uses transplantation 
of BM cells from transgenic mice in which LacZ is expressed under 
the regulation of flk-1 or Tie-2(Flk-1/LacZ/BMT, Tie-2/LacZ/BMT) 
lineage-specific promoter, into wild-type control mice, using the 
same in various ischemic injury models. It has been shown by using 
the above model that BM-derived Flk-1- and/or Tie-2- expressing 
endothelial lineage cells can localize to vascular structures wound 
healing [25,3]and cardiac ischemia [16,17], Regardless of the origin 
of EPCs, they undoubtedly play a significant role contributing to neo- 
vascularization via vasculogenesis in ischemic tissues.

The tissue resident EPCs secrete a variety of pro-angiogenic 
cytokines and growth factors in a paracrine fashion there by actively 
supporting proliferation and migration of pre-existing ECs thus 
promoting angiogenesis and contributing in an indirect mode to 
neovascularization to restore tissue homeostasis[4].

In fact observations of the preclinical studies remind us the 
evidence of enhanced intrinsic recipient angiogenesis by extrinsic 
factors derived from transplanted EPCs in myocardial ischemia 
models [26,27].

This paracrine factor secretion of EPC activity show their 
indirect contribution to neovascularization was established by our 
and several othergroups, identifying EPC secretome with presence 
of various cytokines and other proangiogenic factors such as viz., 
vascular endothelial growth factor (VEGF), hepatic growth factor 
(HGF), angiopoetin (Ang-1, stroma derived factor (SDF)-1a, insulin-
like growth factor (IGF)-1, and endothelial nitric oxide synthase 
(eNOS[28-30].Therefore, EPCs can also mediate tissue-protective 
effects and contribute to neovascularization in ischemic tissues via 
production of several important indirect support factors such as 
exosomes [31].

EPC Therapy:Pre-clinical animal models
Since EPCs were first described, more than a decade ago, our 

group focused especially on the regenerative potential of these 
enigmatic cells trying to understand the biology and functions 
with the ultimate goal to translate to bedside. As this cell type has 
got enormous potential to treat ischemic diseases [5,11,32,33]. The 
preclinical transplantation of blood/BM-derived EPCs, opened new 
avenue for the treatment of ischemic diseases.

It was shown that therapeutic efficacy of EPCs to be safe and 
enhanced neovascularization and regeneration of ischemic tissues 
[5,11,32,33]. Coronary artery disease can be attenuated by the 

collateral circulation development; after recognizing the role of 
EPCs in neovascularization, investigators started evaluatingpotential 
therapeutic efficacy of EPCs. This was validated by recovery of 
blood flow s in mice with hindlimb ischemia treated with EPCs 
compared to control mice that received mature ECs [34].  It was 
also suggested a similar benefits with administration of cord blood 
derived EPCs isolated in a nude rat model of hind limb ischemia [35]. 
Lately, human CD34+ cells transplanted into a nude rat model of 
myocardial ischemia and observed preservation of (Left ventricular) 
LV function and inhibition of cardiac apoptosis. These findings were 
in corroboration with the observed preservation of LV function and 
a reduction in infarction size [17,27,36]. Our study demonstrates 
that EPC therapy after diabetic myocardial infarction (MI) effectively 
reduces cardiac fibrosis and preserves cardiac function through release 
of HGF, which effectively inhibits cardiac microRNA-155-mediated 
pro-fibrosis signaling and attenuates left ventricular dysfunction in 
diabetic MI mice [37].

Further, Schatteman et al. [38] reported transplantation 
of human CD34+ cells into diabetic nude mice with hind limb 
ischemia resulted in significant blood flow recovery in ischemic 
limbs. Interestingly, a recent study in porcine models of MI, EPC 
administration along with AKT inhibitor (LY294002) significantly 
reduced their neovascularization ability suggesting EPC mediated 
neovascularization and preserved cardiac function were Akt- 
dependent[39]. All these above studies indicate that EPC to be a 
potential stem cell type for the treatment of ischemic diseases in the 
pre-clinical settings and encouraged to move on to EPC based clinical 
trials.

The functional benefits observed with EPC-based therapy pre-
clinical studies might have been from several aspects. At the ischemic 
zone, both transplanted as well as endogenous EPCs could protect 
ECs and ischemic tissue resident cells from ischemia-induced cell 
death by secreting various growth factors such as VEGF, SDF-1 and 
IGF-1. Thus EPCs secreted factorsenhance neovascularization and 
functionally and structurally rebuild the injured tissue contributing 
to the recovery.

Novel therapeutic strategies for improving EPC based 
therapeutics for ischemic tissue repair

A central recognized challenge that precludes full functional 
benefits of EPC based therapies is the poor survival and retention of 
transplanted cells thereby greatly compromising their therapeutic 
efficacy. Emerging evidence from preclinical studies suggests that 
hostile microenvironment in the infarcted myocardium, including 
inflammation and oxidative damage, has adverse effects on 
transplanted stem cell survival and function [40,41]. 

Previous reports from our and other labs has established a 
significant cardio-protective role of anti-inflammatory cytokine, 
interleukin-10 (IL-10) therapy in mice models of AMI and pressure-
overload, which in turn is mediated by IL-10-mediated modulation 
in a number of signal transduction pathways including p38 mitogen-
activated protein kinases (MAPK), nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) and signal transducer 
and activator of transcription-3 (STAT-3) pathway [42-45]. Our 
recently published work [17] demonstrated that combined therapy 
with EPC+IL-10 is significantly more effective in the improvement of 
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post-acute myocardial infarction (AMI) left ventricular function and 
ischemic angiogenesis than EPC alone, and that this effect of IL-10 is 
mediated in part by its effect on enhanced EPC survival and function 
in the ischemic myocardium.

Our recent report suggests that small molecules such as valproic 
acid and/or 5-azacytidine based epigenetic reprogramming of EPCs, 
both murine and human, results in an open epigenome conducive 
to enhanced global gene expression including the induction of 
cardiomyocyte specific gene expression. We have shown that, 
modifying human CD34+ EPCs with small molecules induce 
cardiomyogenic differentiation and histological fibrosis area, and 
echocardiographic functional parameters were better persevered in 
immune deficient mice model of MI [16]. Further, intramyocardial 
transplantation of reprogrammed EPCs improved paracrine capacity 
of reprogrammed cells. Our approach to use small molecules is 
an innovative way to induce multipotency and cardiomyogenic 
differentiation potential in EPCs, without the undesired complications 
involved with induced pluripotent cells, is novel.

We recently also reported Arg-Gly-Asp-Ser peptide (RGDS-PA) 
nanofibers presenting integrin-binding epitope facilitate enhanced 
retention of bone marrow derived angiogenic progenitor cells and 
improved efficacy upon their therapy in a murine model of hind 
limb ischemia. This represents a novel application of PA nanofiber 
technology to augment cell retention after cell-based therapy [46]. 

EPC Therapy: Clinical trials
Numerous clinical trials have been initiated and are currently in 

progress to understand the safety issues and therapeutic efficacy of 
EPCs observed in animal models on ischemic diseases [47](Table 1).

Our group performed a phase I/II, randomized, placebo-
controlled, dose-ranging, clinical trial to evaluate the intramyocardial 

transplantation of G-CSF-mobilized CD34+ cells in 24 patients 
with intractable angina pectoris [48]. Favorable trends in angina 
frequency, exercise tolerance, and perfusion defect were observed 
in patients administered CD34+ cells compared with patients who 
received placebo.

 As for the evaluation of safety issues, neither death nor life-
threatening adverse events were observed in therapy group, the 
results from this phase II study support the safety and efficacy of 
intramyocardially injected autologous CD34+ cells for symptom 
reduction and improved exercise capacity in “no-option” patients 
with refractory angina. Larger-scale studies are warranted to verify 
these effects and to refine the methods for collecting and administering 
CD34+ cells to patients with disabling angina symptoms.

Clinical EPC Therapies: Challenges and Limitations
In most patients undergoing EPC therapy for ischemic 

diseases have background diseases such as aging [49],diabetes[50]
hypercholesterolemia [51], hypertension [52] and smoking[53,54] 
which affect the number and function of both circulating and BM 
EPCs. Which might be a potential cause for the modest clinical 
outcome of EPC transplantation for ischemic diseases.

Therefore, considering autologous EPC therapy, resolving 
certain issues may help to overcome the shortcomings of EPCs 
should include: [1] EPCs delivery at the site of injury [2], enhancing 
strategies to mobilize endogenous EPC (appropriate cytokine/growth 
factor therapy) [3], EPC enrichment techniques (such as apheresis 
or BM aspiration) [4], enhancement of EPC functions/ salvage of 
EPC dysfunction by gene therapy or small molecule treatment [5] 
Improving strategies to scale-up EPCs culture and expansion for 
clinical use[6]. Enhancing transplanted EPC retention and survival in 
ischemic tissues by anti-inflammatory cytokine IL-10 or biomaterials.

EPC type Trail Name Disease type Patients 
(T/C) Outcome Reference

G-CSF-PB-CD34+ Fujita et al.
2014 CLI 11

Rest pain scale 
Physiological parameters 
↑

[55] 

G-CSF-PB-CD34+ Povsic et al, 2013 AP 200/100 Improvement of functional capacity in patients with refractory 
angina. [56]

CD133+ Forcillo et al 2013 CICM LVEF increased [57]

G-CSF-PB-CD34+/ Poglajen et al, 2014 ICM 33 LVEF ↑ (58)

      CD34+ Vrtovec et al, 2013 NICM 20/20 LVEF  ↑ Transendocardial injections associated with better 
clinical outcome [59]

G-CSF-PB-CD34+/CD133+ Burt et al.
2010 CLI 9/0 Physical component score ↑

Leg amputation ↓ [60]

PB/BM Derived EPCs TOPCARE-AMI.2009 AMI 30/29
LVEF  ↑
Perfusion ↑
Infarct size ↓

[61]

G-CSF-PB-CD34+ Losordo et al.
2007 AP 18/6 LVEF ↑

CCS class ↑ [48]

CD133+ Li et al.
2007 AMI 35/35 LVEF ↑ [62]

CD133+ Stamm et al
2007 CICM 20/20 LVEF ↑ [63]

G-CSF-PB-CD34+ Boyle et al.
2006 OMI 5/0 Myocardial neovascularization ↑ [64]

G-CSF-PB-CD34+ Bartunek et al.
2005 AMI 19/16 LVEF ↑

Perfusion ↑ [65]

G-CSF-PB-CD34+ Stamm et al.
2003 RMI 46/9 LVEF ↑

Perfusion ↑ [66]

Table 1: Abbreviations: AMI, acute myocardial infarction; AP, angina pectoris; BM, bone marrow; CLI, critical limb ischemia; EPCs, endothelial progenitor cells; G-CSF 
(granulocyte colony-stimulating factor; NUF, nonunion fracture; OMI, old myocardial infarction; PB, peripheral blood; RMI, recent myocardial infarction; RT, randomized 
trial; T/C, treatment/control, ICM- ischemic cardiomyopathy, NICM, non-ischemic cardiomyopathy, CICM, chronic ischemic cardiomyopathy. - Increased, - decreased.



J Stem Cell Res Transplant 2(1): id1015 (2015)  - Page - 04

Raj Kishore Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

The above strategies might compensate the current disadvantages 
of transplanting dysfunctional EPCs for autologous therapy in 
ischemic diseases by increasing the number and also the quality of 
transplanted EPCs.

Conclusions
Taken together, EPCs serve as a highly promising and novel 

therapeutic option for ischemic tissue repair. It is important to 
clarify if EPC-based therapy is superior over other types of stem/
progenitor cells. Thus additional investigations related to optimize 
techniques for EPC isolation, expansion, mobilization, recruitment, 
and EPC retention and survival strategies post transplantation in a 
ischemic tissue are needed to continue the advancement of this novel 
therapeutic modality (Figure 2). Thus resolving the above issues will 
achieve full-benefits of EPC based therapies for ischemic tissue repair 
representing a future direction.
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