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Abstract

The World Health Organization estimates that diabetes will be the fourth 
most prevalent disease by 2050. Developing a new therapy for diabetes is a 
challenge for researchers and clinicians in field. Many medications are being 
used for treatment of diabetes however with no conclusive and effective results 
therefore alternative therapies are required. Stem cell therapy is a promising tool 
for diabetes therapy, and it has involved embryonic stem cells, adult stem cells, 
and pluripotent stem cells. In this review, we focus on adult stem cells, especial 
human bone marrow stem cells (BM) for diabetes therapy, its history, and 
current development. We discuss prospects for future diabetes therapy such as 
induced pluripotent stem cells which have popularity in stem cell research area.
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BM is transdifferentiated into a variety of lineages because it is a rich 
source of Mesenchymal Stem Cells (MSCs), and more available than 
the other type of stem cells [14]. In this short review, we focus on how 
adult stem cells and bone marrow cells affect beta cell function and 
their potential role in diabetes therapy. 

Islet transplantation 
After the discovery of immunosuppressive agents, islet 

transplantation is considered as a feasible clinical choice and provides 
a promising cure for type 1 diabetes [16]. The Edmonton protocol is 
the standard for islet transplantation. This protocol requires at least 
two donors per transplant [17]. However, the limited source of islets, 
low islet survival rate, and poor islet function post transplantation are 
significant obstacles to routine islet cell transplantation [2]. The low 
survival rate and poor islet function is in part due to the islet isolation 
process, which destroys the supportive microenvironment [18].

Studies have examined the mechanism by which islets perish and 
lose function during transplantation. Human islet transplantation 
has not been used as the standard of care for the treatment of 
type 1 DM due to the fact that islets die and lose function during 
the isolation process. More than 60% of the pancreatic islet tissue 
undergoes apoptosis [19]. The apoptotic pathways in islet cells are 
stimulated by the changes of the islet microenvironment due to the 
loss of vasculature and their sensitivity to hypoxic conditions [19].

External vascular support of Endothelial Progenitor Cells (EPCs), 
which is in islet transplants, is lost during the process of islet isolation 
[20]. Following in vitro culture, loss of vascular support affects their 
dedifferentiation, apoptosis, and necrosis [20,21]. Their survival rates 
are unsatisfactory in islets post-isolation because of vascularization 
damage throughout the islet isolation process [17].

Two types of apoptosis may occur during islet transplantation. 
The first type is the pro-apoptotic proteins released from islet cells as a 
result of DNA damage and mitochondria toxin production. The second 
type is the response to inflammation caused by pre-inflammatory 
cytokines such as IL-1β, TNF-α, and IFN-ϒ. Transplanted islets will 
be damaged and lose viability due to the apoptosis,

Introduction
 Diabetes Mellitus (DM) is a condition where hyperglycemia 

is caused by islet β-cell function deficiency (type I) and inadequate 
insulin secretion and/or the context of insulin resistance (type II) [1]. 
The prevalence of DM is consistently rising throughout the world 
[2]. Type 1 DM is caused by an autoimmune response to the β-cells, 
which physiologically release insulin in the pancreas and has two 
phases. The first phase is insulitis, where the islets are destroyed by a 
mixed population of leukocytes. The second phase is diabetes, when 
most β-cells have been injured. There is no longer adequate insulin 
production to control blood glucose levels, resulting in hyperglycemia 
[3]. Type 2 DM consists of two main problems: the insufficient 
production of insulin from the pancreas and the resistance of body 
cells to normal or even high levels of insulin [4]. 

To restore pancreatic β-cell function, recently developing stem 
cell research provides a great potential. Stem cells are the cells capable 
of regeneration through division and differentiation into multi-
lineage cells [5]. There are three categories of stem cells: embryonic 
stem cells, induced pluripotent stem cells (iPSCs) and adult stem cells. 
Embryonic stem cells are derived from embryos and can differentiate 
into cells of the three germ layers [6]. iPSCs have the unique abilities 
of self-renewal and differentiation into many types of cell lineages. 
These are generated from somatic cells using various transcription 
factors [7]. Adult stem cells are able to regenerate themselves and 
differentiate into the major specialized cell types of the tissue or 
organ. Their primary role in living organism is to maintain and repair 
local tissue [8]. Hematopoietic adult BM, one type of adult stem cells, 
has the ability to transdifferentiate into the classical embryonic germ 
cell layers: ectoderm, mesoderm, and endoderm [9]. Recent studies 
have used BM and its derived stem cells as a source to repair injuries 
of the heart [10,11], neuron [10,12], and muscle [10,13].

In previous reports, the potential of differentiation of embryonic 
stem cells and iPSCs into pancreatic-like cells has been shown in vitro 
[14,15]. Others have also reported that insulin-producing cells can be 
generated from pancreatic ductal cells, hepatic oval cells, umbilical 
cord blood stem cells, and neural progenitor cells [14]. However, 
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There are several studies attempting to develop methods and 
materials to maintain islet function during isolation. Johansson et al. 
found that formation of composite EPC-MSC islets can enhance the 
adherence of the EPCs to the islets and revascularization of the EPCs. 
Proteases from MSCs contribute to EPC migration [20]. Upregulation 
of the expression of angiopoietin and Vascular Endothelial Growth 
Factor (VEGF) in EPCs contribute to an increase in angiogenesis and 
stabilization of the vasculature. This was performed by MSCs [20,22].

Effect of BM to islet transplantation
Previous studies show that BM cells have the ability to repair non 

hematopoietic tissues, including CNS, renal, pulmonary, and skin 
tissue [17]. BM may even play a role in tissue regeneration in these 
organs [17]. Luo et al. established that the rate of apoptosis, apoptosis 
related inflammatory factors, extra cellular ATP accumulation, and 
ATP receptor P2X7R expression reduced in co-cultured human islets 
with human BM versus only human islets culture. It is shown that BM 
co-cultured with human pancreatic islets can inhibit β-cell apoptosis 
and promote insulin positive cells [19]. 

BM contains all type of BM subpopulation, including EPCs. BM 
containing EPCs are capable of revascularization. EPCs from BM can 
protect islet β-cells from injury caused by hypoxia and apoptosis. 
BM has an anti-apoptotic effect by decreasing IL-1β and ATP levels 
and consequently releases them into the extracellular matrix. Thus, 
islets are protected from apoptosis by these anti-apoptotic effects and 
revascularization. This takes place even in long term in vitro culture 
conditions.

A damaged human islet is repaired when human islets are co-
cultured with BM [17]. Levels of insulin release are enhanced from 
islets in long term co-culture with BM. It was demonstrated that 
the first 6 days of a islet-BM co-culture resulted in a monolayer 
surrounding the islet structure. Eventually insulin response to glucose 
was enhanced. This improvement continues to be found in long term 
culture.

On the other hand, islet-only cultures rapidly lose their 
morphology within the first week. The islet cells undergo degeneration 
of their monolayer forms and undergo apoptosis in long term culture. 
They showed spikes of insulin levels on days 15 and 28 due to leakage 
of intercellular insulin from dying β-cells. Basal insulin release levels 
gradually decreased. No viable islet cells were found after 6 months 
islet only culture [17].

Pancreatic islet β-cell growth is supported by BM in vivo, which 
may be manipulated to generate new β-cells in vitro [23,24]. BM cells 
may repair human islets which are injured from the isolation process. 
BM has various subpopulations which may play different roles. For 
instance, BM-derived MSCs possess the ability to differentiate into 
multiple lineages including adipogenic [10,25], osteogenic [10] [26], 
and chondrogenic tissues [10,27]. Alternatively, BM can develop a 
biological scaffold microenvironment. Meanwhile EPCs, which is the 
other type of BM subpopulation, produces undergo angiogenesis and 
vascularization [9].

In spite of the evidence for BM subpopulation differentiation into 
β-cells, mice studies have not been consistent. In a previous study 
of mice, injection of only EPCs into injured pancreas increased the 
number of donor and recipient EPCs, but there was no evidence 
for EPCs differentiation into β-cells [10,28]. It is not surprising 

that EPCs can promote revascularization. It enhances the islet 
microenvironment that was damaged from the islet isolation process. 
Recent research demonstrated human islet survival and function are 
improved by allogenic BM for more than six months [17]. It shows 
that regeneration is achieved by a synergy between angiogenesis and 
paracrine factor. Luo et al. examined two major subpopulations of 
BM, MSCs and EPCs, and found that they influence human islet 
β-cell survival and function [10]. The BM and its derivatives MSCs 
and EPCs have considerably different impacts on β-cell population 
under similar culture conditions even if obtained from the same 
donor. Islet injury is repaired by MSCs and EPCs, but they cannot 
increase the β-cell population since β-cell related transcription 
factors are not activated. Nevertheless, the effect of co-cultured BM 
on human islet β-cell regeneration has not been observed in other 
BM subpopulations. Only BM has the capability of improving β-cell 
regeneration [10].

Future of stem cell therapy for diabetes
iPSCs are a novel source of cell therapy for diabetes, as well as 

other multigenic diseases. iPSCs are reprogrammed from patient 
cells by transcription factors. For instance, three transcription factors 
(OCT4, SOX2, and KLF4) regenerate iPSCs from patient fibroblast 
[29]. These iPSCs begin acting as β-like cells and release insulin. 
Transplantation of homologus pancreatic islets is problematic due 
to immune rejection. Therefore, stem cell therapy with autologous 
iPSCs is a favorable treatment for diabetes [30].

Alipio et al. showed that iPSCs differentiated into β-like cells that 
were similar to the endogenous insulin-secreting cells in mice. iPSCs 
can differentiate into insulin-secreting cells in vitro [4]. In vivo, iPSCs 
reduce high glucose level in the diabetic mouse model [4].

An alternative cell source is human umbilical cord-derived 
mesenchymal stem cells (UCMSCs). UCMSCs can be easily 
isolated from the umbilical cord [31]. They have considerably more 
pluripotency than adult stem cells. They express the pluripotency 
markers OCT4, SOX2, and c-MYC. In contrast to embryonic stem 
cells, transplanted USMSCs are not associated with tumors. Also they 
are inherently immune-suppressive and available for use as a cell 
source with few ethical disputes. Therefore, USMSCs harbor a great 
potential for diabetes treatment [32].

Conclusion
Adult stem cells derived from BM are potential cells for diabetes 

therapy. BM can suppress inflammation and inhibit apoptosis in 
transplanted islets. It initiates revascularization and differentiation to 
β-cells in diabetic pancreases. Transplantation of allogenic BM does 
not cause immune rejection in recipient. Thus, BM derived stem cell 
therapy is a promising therapeutic strategy for treatment of diabetes. 
Other types of stem cells like iPSCs and USMSCs are also being 
developed for diabetes treatment.
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