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Abstract

High Mobility Group Box 1 (HMGB1) is normally a non-histone nuclear 
protein that acts as a DNA chaperone with DNA binding and bending activity. 
Besides its intracellular function, extracellular HMGB1 is an inducer, sensor, 
mediator, and effect or in the innate immune response to infection and sterile 
inflammation. We recently demonstrated that HMGB1 is an important regulator 
of the links between local tissue injuries and the systemic inflammatory 
response in acute pancreatitis. Deficiency of endogenous pancreatic HMGB1 
in experimental acute pancreatitis leads to oxidative stress-mediated nuclear 
catastrophe and nucleosome (including histone and DNA) release, which then 
recruits and activates macrophages, with subsequent HMGB1 release locally 
and into the circulation. Neutralizing extracellular histone and HMGB1 protects 
against acute pancreatitis in conditional pancreas-specific HMGB1 knockout 
mice. Thus, HMGB1 has a dual role in the pathogenesis of pancreatitis, shedding 
light on the role of the innate immune response in infection and tissue damage.
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the basic function of HMGB1 and focus on how HMGB1 regulates 
the development of acute pancreatitis.

The double life of HMGB1
HMGB1 is a member of a family of highly-conserved proteins 

containing HMG box domains among species. It has two homologous 
HMG boxes (termed box A and box B) and one short acidic tail. 
HMGB1 has multiple functions in health and disease, depending on 
its location and modification [12]. In the nucleus, HMGB1 is a non-
histone chromosome protein that binds to DNA, facilitating numerous 
nuclear events such as maintenance of genome stability, nucleosome 
sliding, gene transcription, DNA repair, and V(D)J recombination 
[13-16]. In the cytosol, HMGB1 is a positive autophagy regulator 
that binds to Beclin-1 protein, contributing to autophagosome 
initiation [17-19]. In the cell membrane, HMGB1 facilitates cell 
migration and neurite outgrowth in a RAGE-dependent manner. In 
addition to intracellular function, HMGB1 can also act as a DAMP 
when passively released from injured cells or actively secreted from 
immune cells [8,20-22]. Once released, HMGB1 binds to a number 
of receptors (e.g., TLR2, TLR4, TLR9, and RAGE) and mediates the 
recruitment of inflammatory cells and the release of proinflammatory 
cytokines (e.g., tumor necrosis factor-α and interleukin-6) [23]. Apart 
from a direct receptor interaction, HMGB1 can be taken up by cancer 
and immune cells, triggering energy metabolism and inflammasome 
activation, respectively [24,25]. Special attention has been paid in 
recent years to the regulation of extracellular HMGB1 activity by 
its partner, receptor, redox status, and cleavage [12]. For example, 
extracellular HMGB1 can exist in a hetero complex with other 
molecules, such as interleukin-1, C-X-C motif chemokine 12, DNA, 
nucleosome, orlipopolysaccharide, that produce synergistic effects in 
many cell processes [26]. Reduced HMGB1 triggers autophagy and 
has immune activity, whereas oxidized HMGB1 induces apoptosis 
and loses immune activity [27]. Overall, serum HMGB1 levels are 
elevated in patients with many diseases, especially inflammation-
associated diseases, and may serve as a valuable biomarker [12]. More 

Introduction
Sterile inflammatory response in acute pancreatitis 

Acute pancreatitis is an inflammatory condition of the pancreas 
often caused by gallstones and heavy alcohol abuse. Acute pancreatitis 
exhibits a broad clinical spectrum of findings varying from mild and 
self-limited to severe, catastrophic illness.  It’s most severe form, 
necrotizing pancreatitis, presents local pancreatic injury, multiple 
organ failure, a systemic inflammatory response, and high mortality 
rates [1]. Under normal conditions, digestive enzymes or proteases 
(e.g., trypsin, elastase, and lipase) are stored in zymogen granules in 
an inactive form. In pancreatitis, these proteases are activated within 
the pancreatic acinar cells and lead to organelle injury and auto 
digestion of the pancreas [2]. Apart from local tissue injury, Systemic 
Inflammatory Response Syndrome (SIRS) is the major pathobiological 
process responsible for the morbidity and mortality of severe acute 
pancreatitis. Acute pancreatitis is usually a sterile inflammatory 
disorder involving a complex cascade of interacting immune cells and 
inflammatory mediators. Several inflammatory mediators are initially 
released by pancreatic acinar cells and result in the recruitment and 
activation of neutrophils, monocytes, and macrophages [3-6], which 
lead to further inflammatory mediator release, acinar cell injury, and 
SIRS [7]. Damage-Associated Molecular Pattern molecules (DAMPs) 
are endogenous molecules released by dead, dying, and injured cells 
that mediate the response to inflammation and immunity through 
various DAMP receptors such as Toll-Like Receptors (TLRs) and 
the Receptor for Advanced Glycation End product (RAGE) [8-
10]. Increasing evidence indicates that DAMPs (including nuclear 
and mitochondrial DAMPs) promote the progression from local 
pancreatic damage to SIRS in acute pancreatitis; play a central role in 
the pathogenesis of multisystem organ failure; and could constitute 
a promising molecular target for therapeutic approaches to acute 
pancreatitis [11]. Our recent study implicates that High Mobility 
Group Box 1 (HMGB1), a classical nuclear DAMP, plays a dual role 
in acute pancreatitis (Figure 1). In this mini-review, we will introduce 
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studies are needed to clearly elucidate the role of HMGB1 in disease. 

Extracellular HMGB1 mediates acute pancreatitis
Several studies have confirmed that serum levels of HMGB1 

are significantly elevated and correlate with the severity of patients 
with acute pancreatitis [28,29]. For instance, Yasuda et al. observed 
that serum HMGB1 levels in patients with severe acute pancreatitis 
(5.4±1.3 ng/mL) on admission (within 72 hours after onset) was 
higher than those in healthy subjects (1.7±0.3 ng/mL) [28]. Kocsis 
et al. reported that circulating HMGB1 levels were higher in 
patients with severe acute pancreatitis (13.33±2.11 ng/ml) than 
matched healthy controls (0.161±0.03 ng/ml) or patients with mild 
pancreatitis (2.64±0.185 ng/ml) [29]. Soluble RAGE (sRAGE), which 
lacks the transmembrane and the signaling domain, has the ability to 
compete with HMGB1 to bind membrane-bound RAGE. In patients 
with acute pancreatitis, the serum levels of sRAGE inversely correlate 
with serum levels of HMGB1 [29]. In contrast, serum DNA level 
may positively correlate with HMGB1 level in patients with acute 
pancreatitis  [29]. Additionally, a significant linear correlation exists 
between circulating HMGB1 levels and disease score, as well as other 
serum acute-phase proteins [28]. Interestingly, one study reports 
that sRAGE, but not HMGB1, is increased in patients with acute 
pancreatitis [30]. Thus, these findings suggest a complex relationship 
between HMGB1 and sRAGE in acute pancreatitis. 

In several experimental animal models of acute pancreatitis, the 
level of HMGB1 in the serum and injured organs is significantly 
increased [31-33]. Inhibition of HMGB1 activity with specific 
neutralizing antibody from Shino-Test Corporation (Sagamihara, 
Japan) protects against severe acute pancreatitis and limits lung, liver, 
and renal dysfunction as well as bacterial translocation to the pancreas 
[34]. Ethyl pyruvate, a key intermediate of glucose metabolism, has 
been shown to protect against lethal sepsis partly by inhibition of 
HMGB1 release [35]. Moreover, early blockade or delayed therapeutic 
delivery with ethyl pyruvate reduces serum HMGB1 level, ameliorates 
extra pancreatic organ (e.g., lung, liver, and intestine) injury, and 
protects rats against established severe acute pancreatitis [36-40]. 
Danaparoid sodium is a low molecular weight heparinoid with 
anticoagulant and anti-inflammatory effects. The anti-inflammatory 
activity of danaparoid sodium against cerulein injection caused acute 
pancreatitis in rats, which is partly mediated through inhibition of 
HMGB1 release [41]. In addition, HMGB1-A box [42], pyrrolidine 
dithiocarbamate [43], antithrombin III [44], honokiol [45], cisplatin 
[46], and scolopendra sub spinipes mutilans  [47] inhibit HMGB1 
translocation, release, or activity, which therefore reduces pancreatic 
injury in severe acute pancreatitis. Thus, extracellular HMGB1 
mediates the inflammatory response and organ dysfunction and is 
likely an effective therapeutic target of acute pancreatitis. 

Intracellular HMGB1 protects against acute pancreatitis
To investigate the role of intracellular HMGB1 in the response to 

local tissue injury and subsequent systemic inflammatory responses, 
we recently created mice with pancreas-specific disruption in Hmbg1 
(Pdx1-Cre; HMGB1flox/flox, termed CH mice) through using a Cre/
LoxP system [48]. As a control, HMGB1flox/flox mice were termed F/F 
mice. Both CH and F/F mice are born alive without developmental 
deficiencies. However, in contrast to F/F mice, the CH mice had 
more severe experimental acute pancreatitis and very high mortality 

rates in L-arginine- and cerulein-induced acute pancreatitis [48]. 
Hematoxylin and eosin stains showed exaggerated death of acinar 
cells, infiltration of leukocytes, and edema of interstitial issue in 
the CHmice compared to F/F mice during acute pancreatitis [48]. 
Serum amylase, the most widely-used marker in the assessment of 
acute pancreatitis severity, was elevated in CH mice during acute 
pancreatitis [48]. Moreover, the levels of pancreatic myeloperoxidase 
(a marker for pancreatic neutrophil recruitment) and serum 
lactate dehydrogenase (a marker for pancreatic necrosis) were 
significantly increased in the CH mice compared to F/F mice during 
acute pancreatitis [48]. The most important step in initiating acute 
pancreatitis is the activation of intrapancreatic trypsinogen to 
trypsin  [49]. As expected, experimental acute pancreatitis-induced 
intrapancreatic trypsin activity was also increased in CH mice 
compared to F/F mice [48]. Binding of HMGB1 to histone and DNA 
sustains chromosome structure and function. We subsequently 
observed that loss of HMGB1 in pancreatic acinar cells increased the 
levels of γ-H2AX (a marker for DNA damage), cleaved-poly ADP 
ribose polymerase, and cleaved-caspase3 (markers for apoptosis); 
release of histones/DNA; and activation of inflammatory signaling 
pathways (e.g., NF-κB and mitogen-activated protein kinases) [48]. 
Besides HMGB1, histones and DNA are proinflammatory nuclear 
DAMPs and their release is regulated by oxidative stress. Blocking 
histone/DNA release has been demonstrated to protect against several 
inflammation-associated diseases [50]. These findings therefore 
indicate that intracellular HMGB1 protects against acute pancreatitis 
through limiting histone and DNA release.

Neutralization of extracellular histone and HMGB1 
confers protection against acute pancreatitis in HMGB1 
conditional knockout mice

Surprisingly, we observed higher serum HMGB1 in CH 
mice following experimental acute pancreatitis, suggesting a link 
between HMGB1 deficiency in local tissue and circulating HMGB1 
accumulation [48]. Next, we demonstrated that the source of 

Figure 1: HMGB1 plays a dual role in acute pancreatitis. Increased stressors 
cause translocation of HMGB1 from the nucleus to the cytosol and then its 
release into the extracellular space in pancreatitis. Loss of intracellular HMGB1 
in the pancreas leads to nuclear catastrophe and inflammatory nucleosome 
release, which can further promote inflammatory cell recruitment/activation 
and HMGB1 release. Finally, increased serum HMGB1 and nucleosomes 
cause systemic inflammatory response syndrome and multiple organ failure.
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circulating HMGB1 in CH mice was from histone- and DNA-
mediated recruitment and activation of macrophages [48]. In vitro, 
DNA inhibitor (Dnase I) and histone 3 (H3)-neutralizing antibodies 
significantly inhibited macrophage migration and HMGB1 release 
[48]. In vivo, anti-H3 neutralizing antibodies effectively reduced 
serum HMGB1 levels and reversed the phenotype of CH mice in acute 
pancreatitis. In addition to blocking histone activity by neutralizing 
antibodies, inhibition of histone release by antioxidant (e.g., N-acetyl-
L-cysteine) also protected CH mice from acute pancreatitis. Finally, 
we determined whether blocking HMGB1 activity would change the 
phenotype of CH mice in response to suffering from pancreatitis. 
Indeed, we demonstrated that anti-HMGB1 neutralizing antibodies 
prolonged animal survival and decreased serum levels of tissue 
enzymes (e.g., amylase, lactate dehydrogenase, and myeloperoxidase) 
and pro-inflammatory cytokines (e.g., tumor necrosis factor-α and 
interleukin-6) in CH mice following pancreatitis [48]. These findings 
suggest that the crosstalk between intracellular and extracellular 
nuclear DAMPs (e.g., HMGB1 and histones) leads to the development 
of pancreatitis (Figure 1).

Conclusion
HMGB1 is both an architectural nuclear protein and a DAMP. 

Despite the recent significant advances in understanding the 
opposing effects of intracellular and extracellular HMGB1 in acute 
pancreatitis, many questions remain. For example, what regulates 
the balance between levels of intracellular and extracellular HMGB1? 
One suggestion is the metabolism production from mitochondrial 
stress-driven HMGB1 translocation and release [51,52]. Another 
issue concerns the activity of HMGB1 from different types of death, as 
HMGB1 redox status may distinguish immunogenic and tolerogenic 
cell death [53]. Reagents that block HMGB1’srelease and activity 
ameliorate the symptoms in experimental pancreatitis; therefore, they 
will probably be tested in clinical trials. Additional large randomized 
studies are necessary to determine the utility of HMGB1 inhibitor in 
patients.
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