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Abstract

Pythagoras, Plato and Euclid’s paved the way for Classical Geometry. 
The idea of shapes that can be mathematically defined by equations led to the 
creation of great structures of modern and ancient civilizations, and milestones 
in mathematics and science. However, classical geometry fails to explain the 
complexity of non-linear shapes replete in nature such as the curvature of a 
flower or the wings of a Butterfly. Such non-linearity can be explained by 
fractal geometry which creates shapes that emulate those found in nature with 
remarkable accuracy. Such phenomenon begs the question of architectural 
origin for biological existence within the universe. While the concept of a unifying 
equation of life has yet to be discovered, the Fibonacci sequence may establish 
an origin for such a development. The observation of the Fibonacci sequence 
is existent in almost all aspects of life ranging from the leaves of a fern tree, 
architecture, and even paintings, makes it highly unlikely to be a stochastic 
phenomenon. Despite its wide-spread occurrence and existence, the Fibonacci 
series and the Rule of Golden Proportions has not been widely documented in 
the human body. This paper serves to review the observed documentation of the 
Fibonacci sequence in the human body. 

Keywords: Fibonacci; Surgery; Medicine; Anatomy; Golden proportions; 
Math; Biology

Introduction
Classical geometry includes the traditional shapes of triangles, 

squares, and rectangles that have been well established by the 
brilliance of Pythagoras, Plato, and Euclid. These are fundamental 
shapes that have forged the great structures of ancient and modern 
day civilization. However, classical geometry fails to translate into 
complex non-linear forms that are observed in nature. To explain 
such non-linear shapes, the idea of fractal geometry is proposed which 
states that such fractal shapes/images possess self-similarity and 
can be of non-integer or non-whole number dimensions. Whereas 
classical geometric shapes are defined by equations and mostly whole 
number (integer) values, the shapes of fractal geometry can be created 
by iterations of independent functions. Observing the patterns 
created by repeating ‘fractal images’ closely emulate those observed 
in nature, thus questioning whether this truly is the mechanism of 
origination of life on the planet. Two important properties of fractals 
include self-similarity and non-integer or non-whole number values. 
The idea of ‘self-identity’ is that its basic pattern or fractal is the same 
at all dimensions and that its repetition can theoretically continue 
to infinity. Examples of such repeating patterns at microscopic and 
macroscopic scales can be seen in all aspects of nature from the 
florescence of a sunflower, the snow-capped peaks of the Himalayan 
Mountains, to the bones of the human body. 

The observation of self-similarity belonging to fractal geometry 
found in multiple aspects of nature, leads to the question of whether 
such an occurrence is merely stochastic or whether it has a functional 
purpose. While a singular unifying equation to define the creation 
and design of life has yet to be determined, an un-coincidental 
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phenomenon known as the Fibonacci sequence and the rule of 
‘Golden Proportions’ may serve as a starting point for uncovering the 
methods of a universal architect, should one exist. 

Fibonacci and rule of golden proportions
Fibonacci sequences: The Fibonacci sequence was first 

recognized by the Indian Mathematician, Pingala (300-200 B.C.E.) 
in his published book called the Chandaśāstra, in which he studied 
grammar and the combination of long and short sounding vowels 
[1,2]. This was originally known as mātrāmeru, although it is now 
known as the Gopala-Hemachandra Number in the East, and the 
Fibonacci sequence in the West [1,2]. Leonardo Pisano developed 
the groundwork for what is now known as “Fibonacci sequences” to 
the Western world during his studies of the Hindu-Arab numerical 
system. He published the groundwork of Fibonacci sequences in 
his book called Liber Abaci (1202) in Italian, which translates into 
English as the “Book of Calculations”. However, it should be noted 
that the actual term “Fibonacci Sequences” was a tributary to 
Leonardo Pisano, by French Mathematician, Edouard Lucas in 1877 
[3]. The Fibonacci sequence itself is simple to follow. It proposes that 
for the integer sequence starting with 0 or 1, the sequential number is 
the sum of the two preceding numbers as in Figure 1. 

A) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…. ∞  
Or 

  B) 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… ∞
Figure 1: Illustration of Fibonacci Sequences. A) Fibonacci Series starting 
with 1 B) Fibonacci Series starting with 0.
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As shown in Figure 1, Fibonacci sequences can either begin with 
0 or 1. Although the sequence, originally proposed in Liber Abaci by 
Leonardo (follows the sequence in A) begins with 1, this sequence 
essentially reduces to the recurrence relationship of: FN = Fn-1 + Fn-2

Given that the starting numbers of the sequence can be either: 
A) F1 = 1 F2 = 1 or B) F1 = 0 F2 = 1.In this sequence it can be seen 
that each additional number after the given conditions of 1 or 0, is a 
direct result of the sum of the two preceding numbers. For example, 
in series (A), 1+ 1 = 2, where 2 is the third number in the sequence. 
To find the third number (F4), simply add F3 = 2 and F2 = 1, which 
equals 3 (F4). 

Golden proportion, rectangle, and spiral: Another observation 
that can be made from the series of the Fibonacci numbers includes 
the rule of golden proportions. In essence, this is an observation that 
the ratio of any two sequential Fibonacci numbers approximates to 
the value of 1.618, which is most commonly represented by the Greek 
Letter Phi (φ). The larger the consecutive numbers in the sequence, 
the more accurate the approximation of 1.618. A summary of these 
results illustrating this concept can be seen in Table 1. 

Furthering this observation, shapes can be created based upon 
length measurements of the Fibonacci numbers in sequence. For 
example, creating a rectangle with the values of any of the two 
successive Fibonacci numbers form what is known as the “Golden 
Rectangle”. These rectangles can be divided into squares that are 
equally sided and are of smaller values from the Fibonacci sequence 
Figure 2. 

Rectangles created using consecutive numbers from the Fibonacci 
sequence can be divided into equally sided squares of such numbers 
as well. The length of a single side can be divided into smaller values 
of the Fibonacci sequence. Connecting the diagonals of each of the 
squares creates a spiral, known as the Golden Spiral. 

This image compares the spiral of the human ear, the shell of a 
nautilus, and the golden spiral. Both the human ear and the shell of a 
nautilus approximate the dimensions of the golden spiral. 

Connecting the corners of each of the squares by an arc reveals a 
spiral pattern. This spiral pattern is known as the ‘golden spiral’. This 
pattern is seen in several different forms in nature including, but not 
limited to the human ear and the shell of a nautilus as seen in Figure 3. 

Human anatomy and Fibonacci
Proportion of human bones: In the human body, there are 

instances of the Fibonacci Phi (φ) although it has not been widely 
discussed. In 1973, Dr. William Littler proposed that by making a 
clenched fist, Fibonacci’s spiral can be approximated in Figure 4 [4]. 

In this paper, Litter proposed that such geometry is observed 
based upon ratio of the lengths of the phalanges, and that the flexor 
and extensor movement of the primary fingers approximate the 
golden spiral. Such a spiral would have to be created based upon the 
relationship between the metacarpophalangeal and interphalanges of 
the digits [4]. However, due a lack of statistical and well documented 

FN + 1 FN (FN + 1)/FN

2 1 2

3 2 1.5000

5 3 1.6666

8 5 1.6000

13 8 1.6250

21 13 1.6154

34 21 1.6190

55 34 1.6176

89 55 1.6182

144 89 1.6179
(Nearest approximation of φ)

Table 1: Ratios of Fibonacci Numbers for the sequences starting with 1. Ratios 
approximate Fibonacci value of Phi (φ) 1.618. 

Figure 2: Golden Rectangle and Golden Spiral.

Figure 3: Golden Spiral in Nature.

Figure 4: The human hand superimposed on the Golden Rectangle, with 
approximations to the Golden Spiral [4]. 
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empirical data, accurate representations of the golden spiral could 
not be readily ascertained. In 1998, Gupta et al., confirmed that the 
motion of the phalanges do approximate the pattern of the golden 
spiral, excluding for the fifth digit because of abduction of the digit 
during extension [5]. Through empirical evidence obtained through 
radiographic analysis of the hands of 197 individuals, Hamilton and 
Dunsmuirin 2002 concluded that the ratios between the phalange 
lengths of the digits do not approximate the golden ratio value of 
(φ) 1.618 [6]. However, Hutchison and Hutchison (2010) showed 
that the data collected by Hamilton et al. (2002) overlooked the 
relationship that Littler actually proposed. Hamilton and Dunsmuir 
(2010) confirmed that the phalangeal length ratio data obtained 
from their subjects compared to those that were almost arbitrarily 
listed by Littler in 1973, were in fact comparable and approximated 
the Fibonacci value of (φ) of 1.618. What Hamilton et al. failed to 
notice in their own data was that the values they obtained from their 
research approximated a Lucas series, which essentially underscores 
a Fibonacci sequence in that the sum of the first two lengths equaled 
the third length [7]. 

Hamilton and Dunsmuir’s findings highlighted that the index, 
second, and third digits follow a series of 1x, 1.3x, 2.3x [7]. Hamilton 
et al. provided length measurement data for the fourth digit (little 
finger) that follows the initial values of a Fibonacci sequence of 
0,1,1,2, represented by y, y, and 2y in Figure 5 [7]. Hence, the data 
collected by Hamilton et al., supported Littler’s initial proposal of 
a clenched fist approximating the dimensions of the golden spiral. 
Additionally, Hamilton’s data showed that the ratios for the length of 
the phalanges follows the additive rule of a Lucas series for the index, 
second and third digits, while approximating Fibonacci values for the 
fourth digit (little finger). 

The aesthetics of a smile and beauty: The rule of golden 
proportions has been proposed in an attempt to define anatomical 
beauty. It is commonly accepted that facial beauty is correlates with 
anatomical symmetry [8]. One of the main features of the human face 
is the mouth and teeth. Thus, professionals within the field of dentistry 

have attempted to quantitatively characterize the parameters of an 
aesthetically appealing smile. The most logical starting point is that 
of the rule of golden proportions. In 1973, Lombardi was the first 
to officially propose the existence of having proportionate teeth, but 
dismissed the idea of using the rule of golden proportions to create 
aesthetic teeth [9]. He did suggest an underlying repeated ratio of the 
maxillary anterior teeth for aesthetics, but stated the inappropriate 
use of the rule of golden proportions for such purposes. In 1978, 
Levin was the first to observe that: 1) the width of the maxillary central 
incisor is in golden proportion to the width of the lateral incisor. 2) 
The width of the maxillary lateral incisor is in golden proportion to 
the width of the canine [10]. Based upon this observation, Levin later 
developed a tooth caliper to gauge whether an individual’s teeth are 
in golden proportion to one another, and diagnostic grid to verify 
if the teeth are appropriately spaced. Further research into the 
relationship between the golden proportion, dental arrangement, and 
an aesthetic smile was developed by Rickets in 1982. He implemented 
the use of the golden proportions in the treatment of patients [11,12]. 
While Levin’s observation of the golden ratio existing in dentition is 
undeniable, its application to developing an aesthetically appealing 
smile has recently been questioned and often dismissed [9,13-15]. 

In 2007, Dio et al. attempted to empirically define the basis for 
determining/judging beauty [16]. Dio et al., utilized fMRI imaging of 
the brain to formulate an association between brain stimulation from 
the interpretation of visual models with different physical proportions-
using a model constructed according to golden proportions as an 
independent variable. The results of the study indicate that defining 
beauty is a joint process of cortical neurons, where Dio et al. identified 
that objective beauty stimulates the insula, whereas subjective beauty 
based upon the judgment of the individual perceiving the experience 
shows functional excitation of the Amygdala. Dio et al. echo the 
sentiments referenced by Gombrich [17] and Ramachandran [18], in 
that the criteria for making overall assessments of beauty seem to be 
related to our biological heritage, although it cannot be explained by a 
conscious explanation [16]. In our opinion, while the existence of the 
golden ratio continues to be revealed in several different instances of 
the human anatomy, attempting to use its proportions as a measure of 
beauty is not something that should be standardized. It is influenced 
by many different factors including cultural influences. This is 
something that may have been overlooked by Dio et al. study, in that 
in the demographic information about the 14 participants in the study 
was not included. The idea of ‘beauty’ itself is a subjective term and 
not one that can be universally held constant. The diversity of biology 
in its essence is what constitutes its beauty, while the observation of 
the golden proportion in nature highlights an architectural design, 
proportions, and symmetry. 

Phyllotaxis, coronary arteries, and the human heart beat: 
Although the blood vessels of the human body and a plant have 
different physiological components, they are very similar in their 
basic function and visual appearance Figure 6. The vascular network 
in its basic structure is nearly identical to shapes that can be created by 
fractal geometry, as seen in Figure 6C. Mathematically, the properties 
of these structures are created by the self-similarity of the fractal. This 
means that the whole image is the result of multiple smaller copies 
of itself that share the same statistical properties at different scales of 
measurement.

Figure 5: Phalangeal lengths as reported by Hamilton et al. [6]. For the index, 
second and third digits:  ratios of the DIP-tip/PIP-DIP/MCP-PIP distances 
were 1:1.3:2.3, and 1:1:2 for the little finger. DIP: Distal interphalangeal; PIP: 
Proximal Interphalangeal; MCP: Metacarpophalangeal Joint. 
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Of importance here is that in 1977, Mitchison revealed that 
the phyllotaxis of plants follows the Fibonacci sequence 1, 1, 2, 3, 
5, 8, 13, 21… as seen in Figure 1. Likewise in 2011, Ashrafian and 
Atasiounoted that the number of branches from vessels in the 
heart follows the Fibonacci sequences Table 2 [19]. Ashrafian and 
Atanasiou, supported their observation by correlating studies which 
showed that atherosclerotic lesions in coronary arteries follow a 
Fibonacci distribution [20]. 

In 2013, Yetkin et al. showed that the golden ratio of Phi (φ) 
1.618, exists within the cardiac cycle of the human heart beat. It is 
known that the time periods for the systolic and diastolic phases 
vary with the method of measurement. The three most commonly 
used techniques for determining systolic and diastolic phases of 
the cardiac cycleinclude: electrographical, echocardiogaphical, and 
phonocardiographical techniques. Yetkin et al. defined systole as 
the time between the ‘R wave’ and the end of the ‘T wave’ using an 
electrocardiogram [21]. The data from their research included an 
assessment of 162 healthy subjects, and concluded that the ratio of 
the Diastolic time interval/Systolic time interval was 1.611, while the 
R-R interval/Diastolic time interval was 1.618 which is the value of 
Phi (φ) [21].

Fibonacci, Fractals, and the Human Genome: The supposition 
that the structure of DNA and its organization pattern is a fractal 
was first proposed by Benoit Mandelbot in 1982 [22]. Mandelbot, 
for the most part, is responsible for first coining the term “fractal” 
and providing mathematical explanation non-euclidean geometries 
observed in nature. In the early 1990’s, based upon the supposition 
made by Mandelbot, it was proven that the Human genome contains 
fractal behavior - Fibonacci series, and the golden proportion. For the 

past 25 years, this work has mainly been led by French independent-
researcher Jean-Claude Perez. In 1991, Perez proposed that the DNA 
gene-coding region sequences were strongly related to the Golden 
Ratio and Fibonacci/Lucas integer numbers [23]. His work was 
bolstered by Yamagishi et al who found consistency of a Fibonacci 
series level of organization across the whole human genome [24]. In 
2010, Perez provided evidence that the genetic code in Table 3 not 
only maps codons to amino acids, but also serves as a global error-
detection scheme [25]. 

In the simplest explanation of his research, Perez analyzed the 
entirety of the human genome yet only evaluated a single strand 
considering that 1 strand is a mere complement of the other. As 
outlined by Perez in 2010, the cumulative number of each of the 
64 genetic codons for the three different codon reading frames was 
obtained [25]. Then analysis on 24 human chromosomes, using the 
same method, was performed and the results were totaled for the 
3 codon reading frames and the 24 chromosomes. The 64 codon 
population was arranged according the Genetic Code as seen in Table 
3. The table was then separated according to the 6 binary splits of a 
Dragon Curve. A dragon curve is an irregularly shaped curve with a 
self-similar pattern, hence a fractal image as shown in Figure 7. 

Conceptually, a Dragon Curve can be created by folding of a piece 
of paper into a long strip. Then as the strip of paper is unfolded, the 
adjacent segments are rotated and formed at right angles [26,27]. 
Computer modeling of this concept is shown in Figure 7. Perez’s 
research in 2010makes several conclusions regarding the fractal 
nature of DNA. First, the universal genetic code serves as a macro-
level structural matrix [25]. This matrix serves as a regulatory 
mechanism, controlling and balancing the codon population within 
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Figure 6:  Comparison between the silhouettes of a tree (A), the blood vessels of a heart (B), and a fractal image (C).

Number of branches

2 LCA RCA

3 LAD LCx RCA

5 LAD LCx RI AM PDA

8 LAD Ldiag1 LCx OM1 Sep1 PDA Rdiag1 AM

13 LAD PLV1 PRV1 Sep3 Sep4 OM2 LDiag2 Sep2 OM3 PLV2 PLV3 PRV2 PRV3

Table 2: Table summarizing the number of branching from blood vessels of the Heart showing that branching numbers follow a Fibonacci Series [19].

Sequence branding of the coronary arterial tree. LCA: Left Coronary Artery; RCA: Right Coronary Artery; LAD: Left Anterior Descending; LCX: Left Circumflex; OM: 
Obtuse Marginal; AM: Acute Marginal; PDA: Posterior Descenting Artery; PRV: Posterior Right Ventricular (1) = lateral; (2) = intermediate; (3) = medial, Sep: Septal; 
RI: Ramus Intermedius (authors interpretation).
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the whole human genome. By modeling of the arrangement of the 
nitrogenous bases, Adenine (A), Guanine (G), Cytosine (C), and 
Thymine (T), using both the Universal Genetic Code Table Figure 3 
and the Dragon-Fractal paradigm, symmetry in the data was revealed. 
Such symmetry showed two attractors towards values of “1” and that 
of Phi (φ) 1.618 [25]. According to Chaos theory of dynamic systems, 
attractors can be thought of ‘magnetic’ points to which the initial state 
of a complex system evolves towards in its final conditions. Attractors 
are important in mathematical modeling and systems because they 
serve as the link between Chaos theory and Fractal geometry [28]. 
Perez concludes that the ratios between 3-base pair codons sorted by 
A or G in the second base positions and those by T and C in the second 
base position tend to an attractor value of “1” [25]. The ratios between 
codons C or G and T or A in the second base position tend to a cluster 
value of “3(φ)/2” [25]. Furthermore, the distance that separates these 
two attractors of “1” and “3(φ)/2”, is ½(φ). In a 2009 follow-up study 

SECOND NUCLEOTIDE

FIRST NUCLEOTIDE

T C A G

THIRD NUCLEOTIDE

T

TTT 109591342 
2.4667

TCT 62964964 
1.4172

TAT 58718182 
1.3216

TGT 57468177 
1.2935 T

TTC 56120623 
1.2632

TCC 43850042 
0.9870

TAC 32272009 
0.7264

TGC 40949883 
0.9217 C

TTA 59263408 
1.3339

TCA 55697529 
1.2536

TAA 59167883 
1.3318

TGA 55709222 
1.2539 A

TTG 54004116 
1.2133

TCG 6263386 
0.1410

TAG 36718434 
0.8265

TGG 52453369 
1.1806 G

C

CTT 36828780 
1.2791

CTT 50494519 
1.1365

CAT 52236743 
1.1758

CGT 7137644 
0.1607 T

CTC 47838959 
1.0768

CCC 37290873 
0.8393

CAC 42634617 
0.9596

CGC 6737724 
0.1517 C

CTA 36671812 
0.8254

CCA 52352507 
1.1784

CAA 53776608 
1.2104

CGA 6251611 
0.1407 A

CTG 57598215 
1.2964

CCG 7815619 
1.1759

CAG 57544367 
1.2952

CGG 7815677 
0.1759 G

A

ATT 71001746 
1.5981

ACT 45731927 
1.0293

AAT 70880610 
1.5954

AGT 45794017 
1.0307 T

ATC 37952376 
0.8542

ACC 33024323 
0.7433

AAC 41380831 
0.9314

AGC 39724813 
0.8941 C

ATA 58649060 
1.3201

ACA 57234565 
0.7433

AAA 109143641 
2.4566

AGA 62837294 
1.4144 A

ATG 52222957 
1.1754

ACG 7117535 
0.1602

AAG 56701727 
1.2763

AGG 50430220 
1.1351 G

G

GTT 415577671 
0.9354

GCT 39746348 
0.8946

GAT 37990593 
0.8551

GGT 33071650 
0.7444 T

GTC 26866216 
0.6047

GCC 33788267 
0.7605

GAC 26820898 
0.6037

GGC 33774099 
0.7602 C

GTA 32292235 
0.7268

GCA 40907730 
0.9208

GAA 56018645 
1.2609

GGA 43853584 
0.9871 A

GTG 42755364 
0.9623

GCG 6744112 
0.1518

GAG 47821818 
1.0764

GGG 37333942 
0.8203 G

Table 3: The 64 codon populations of the whole human genome for the 3 codon reading frames of single stranded DNA (2843411612 codons). In this table, the 3 
values in each cell are: the codon label, the codon’s total population, the “Codon Frequency Ratio” (CFR). CFR is computed as: codon population x 64 / 2.843.411.612. 
(Where 2.843.411.612 is the whole genome cumulated codons). Then, if CFR < 1, the codon is rare, If CFR>1, the codon is frequent.

Figure 7: Dragon curve after 7 folds (a), and after 11 folds (b) [27].

by Perez, he analyzed the codon populations of 20 various species like 
Eukaryotes, bacteria and viruses. The results showed that 3 parameters 
(1, 2, and Phi (φ)) define codon populations within their genomes 
to a precision of 99% and often 99.999% [29]. For the human and 
chimpanzee genomes, codon frequencies are 99.99% correlated [29]. 
This exemplifies the widespread occurrence of Phi (φ) and Fibonacci 
series not only within the human genome but in other species as well. 

Conclusion

Fractal geometry lays the foundation to understanding the 
complexity of the shapes in nature. In the exploration of the origins 
of life through mathematics, the occurrence of the Golden Ratio, 
Fibonacci Series and the underlying Lucas series are observed in 
several aspects of life on planet earth and within the cosmos. Although 
widely identified in non-biological fields such as architecture and 
art, it has not been well explored in the human biology. Recent 
work has begun to explore the understanding of such phenomenon 
documented at several different scales and systems in the human 
anatomy and physiology ranging from orthopedics, dentistry, the 
spiral of the human ear, the cardiovascular system and the human 
genome. The observance of such a seemingly universal concept begs 
the question of the origin of life; however, more research needs to be 
performed to explore its physiological role in biology. Understanding 
its functional role may be a keystone to making quantum advances 
in several fields such as artificial intelligence, biomedical engineering 
designs, and human regeneration, amongst others. 
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