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Abstract

Pancreatic cancer is one of the most dreadful disease having high 
morbidity and mortality rate with limited success in treatment option. Even 
after chemotherapy, radiotherapy and surgical interventions, long-term survival 
remains a remote possibility. The identification of appropriate targets for 
exploiting the novel modalities, an alternative to existing adjuvant therapies is 
the need of hour. The advancement in identification of genetic and molecular 
target controlling the critical pathways in pancreatic cancer provides deep 
insight for the development of newer strategies. Gene therapy approaches 
are currently being explored for the treatment and prevention of pancreatic 
cancer deaths by engineered novel delivery systems. In the present review, an 
overview of principles behind use of gene therapy including molecular targets, 
various delivery vectors and gene therapy approaches in context to pancreatic 
cancer, including in-vitro, in-vivo and clinical studies are discussed.
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or metastatic cancer. Among them, limited numbers of patients are 
suitable for surgical resection which provides the opportunity for a 
long-term disease-free state but not promised. These shortcomings of 
existing treatment options indicate the need of novel therapies. 

Recent progress in the molecular research provides an insight in 
pancreatic cancer associated genes with their expression profiles and 
mutation in cancer cells as well as genetic targets for development 
of novel therapeutic strategies, either alone or in combination 
with existing conventional cytotoxic chemotherapies. These allow 
improvement in treatment outcomes and also reduce toxicity as 
well as problem of cross-resistance, which generally happens with 
standard radiotherapy and chemotherapy. 

Gene therapy treatment approach is based on the delivery of 
genetic material i.e., exogenous nucleic acid into cancer cells of a 
patient, to eradicate the cause of cancer by manipulating intracellular 
genetic material. The gene linked with regulatory DNA sequences 
is carried by vectors, either viral or non-viral to transport into the 
target cells where it expresses. The transgene expression might occur 
in every transfected cell or selectively targeted cells, where specific 
activated transcription factors are present, which interact with tissue 
selective or tumor selective promoter/enhancer elements [4,6]. The 
theoretical basis for gene therapy is the assumption that expression, 
restoration, elimination or inhibition of the activity of a particular 
gene of interest will reverse the malignant phenotype and hence, the 
growth of cancer cells will be prevented or inhibited. The effectiveness 
of gene therapy involves the technical ability to inhibit or restore gene 
products in most of the tumour cells [7,8]. The key elements of the 
efficient gene therapy are shown in Figure 1.

Various strategies have been utilized for gene therapy including 
inhibition of activated oncogenes by antisense strategies, restoration 
of the functioning of tumour suppressor genes, gene-directed prodrug 
activation therapy and the use of replication-selective oncolytic 
viruses, etc. Gene transfer can possible by number of means, including 
use of viral vector and non-viral vectors. Most of the developments in 
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Introduction
Pancreatic cancer is one of the most ravaging diseases prevalent 

in today’s time, ranked as fourth common cause of cancer deaths 
and tenth in new cancer cases. The treatment and management 
of this disease by using existing conventional therapies has faced 
difficulties in providing complete cure [1]. Despite advancements 
in the diagnostic techniques, early stage cancer prognosis is still one 
of the most challenging and grave problems; with a post-diagnosis 5 
year survival rate of only 4%. Hence, introduction of new modalities 
in the treatment option is necessary [2]. The identified precursor 
for pancreatic cancer is the multiple genetic mutations which 
result in disinherited growth, evasion of host immune response, 
sustained angiogenesis and avoidance of apoptosis and metastasis 
that can effectively be targeted for the therapeutic interventions [3]. 
Chemotherapeutic treatment option has been proven to be effective 
in palliative treatment only. However, overall outcome is poor due 
to development of resistance with median survival of less than 3 to 
5 months [4,5]. Most of the patients suffer from locally advanced 
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pancreatic cancer gene therapy are in the pre-clinical phase of studies 
and few have progressed to early phase clinical trials [4]. However, for 
increasing the clinical application of the gene therapy, it should have 
ideal characteristics Figure 2.

Molecular Targets of Pancreatic Cancer
Intensive research has been done over the past two decades 

for identification and characterization of molecular alterations 
that generally occur in pancreatic cancer. The pancreatic cancer is 
one of the most complex malignant cancer, it occurs as a result of 
accumulated genetic alterations with more number of mutations as 
compared to other type cancers. It involves the mutation of five or 
more genes in its genetics. Mutations can be possible in oncogenes, 
tumour-suppressor genes, or maintenance genes (i.e., growth factors) 
which may subsequently activate oncogenes or inactivate tumor 
suppressor genes and lead to malignant cancer (Table 1).

Oncogenes
Oncogenes are the number of the genes that exhibit increased 

biological activity as a consequence of mutation. The RAS gene is 
the most commonly detected oncogene in human cancer including 
pancreatic cancer. The main responsible RAS gene for all of the 
pancreatic cancer mutation is K-RAS which resides on chromosome 
12p13 and constitutively mutates up to 95% of adenocarcinomas 
[11,12]. The mutation results in the activation of effector proteins that 
differ from those involved in the normal K-RAS signaling system [13]. 
The gene encodes membrane associated guanine nucleotide binding 
signal transduction proteins; p21, which regulates various cellular 
functions including cell growth, proliferation and differentiation 
[14]. The point mutation in K-RAS gene during the early stage of 
pancreatic carcinoma results in a mitogenic stimulation of cellular 
receptor tyrosine kinases, which allows fusion of phosphate to RAS-
GDP to form an active RAS-GTP. This in turn promotes increase in 
signal transduction resulting in eventual gene activation and hence, 
uncontrolled cell growth and survival [15,16]. The c-erbB-2 and 
c-myc are the other oncogenes occasionally responsible for pancreatic 
cancer [17]. 

Figure 1: Key elements in the development of efficient pancreatic cancer 
gene therapy.

Figure 2: Characteristics of an ideal gene therapy.

Gene Frequency of mutation/expression (%)

                                        Oncogenes

Mesothelin 90-100

KRAS 95

CCK-B receptor 95

MUC1 90

Bcl-xL 90

CEA 85-90

LSM1 87

BIRC5 (survivin) 77-94

EGFR 69

Bcl-2 23

AKT2 10-20

MYB 10

                             Tumor suppressor gene

CDKN2A 90

ARPC5 >90

p16 INK4A (MTS1) 85

p53 50-75

SMAD4 55

BRC A2 7-10

pRb 6

LKB1/STK11 5

MKK4 4

MAP2K4 4

TGFBR2 (MSI1 positive) 3

MLH1 3

TGFBR2 (MSI1 negative) 1

ALK5 1

TGFBR1 1

Table 1: Genetic and molecular targets for pancreatic carcinoma [9,10].
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Tumor suppressor genes
The inactivation of the tumor suppressor genes results into the 

loss of control of vital negative regulators of cell proliferation which 
actuate the uncontrolled cell growth. A number of tumor suppressor 
genes have been identified which are involved in the pathogenesis 
of pancreatic cancer including p53, members of the INK4 family 
and DPC4/SMAD4. The p53 is most commonly mutated tumor 
suppressor gene in pancreatic cancer residing on chromosome 17p 
[18,19]. It encodes 53-kD nuclear phosphoprotein which modulates 
the expression of an array of genes that serves to hold the basic 
functioning of normal cell including cell cycle regulation, arrest, 
apoptosis, differentiation, DNA surveillance and repair [20]. Another 
tumor suppressor gene belonging to the INK4 family of the pro-
mitotic complex cyclin-dependent kinase (CDK) inhibitors is p16. 
It resides on chromosome 9p and is involved in pancreatic cancer. 
The p16 gene prevents phosphorylation of the retinoblastoma protein 
via binding with the cyclin-CDK4 complex, thereby arresting the cell 
cycle at the G1/S phase. The loss of p16 activity prevents the binding 
with cyclin-CDK4 complex, which results in uncontrolled cell growth 
[21]. The functionality of p16 gene is depressed in >80% of pancreatic 
adenocarcinomas which can serve as an important target for genetic 
correction in pancreatic cancers [12]. The homozygous deletion of 
chromosome 18q21 resided Locus 4 gene (DPC4/SMAD4) is also 
responsible for the 30% to 50% of pancreatic cancer. It encodes 
protein for signal transduction of the tumor growth factor (TGF) 
[22].

Growth factors
The number of growth factors including, fibroblasts growth 

factors (FGF), TGF-β and the epidermal growth factor receptor 
(EGFR) with their ligands have actively been involved in pancreatic 
cancer. The FGF are essential for normal cell functioning including 
cell differentiation during tissue repair, mitogenesis and angiogenesis. 
It consists of 19 homologous polypeptide growth factors. Among 
all, FGF 1-5 and 7 are found to be over expressed in the pancreatic 

cancer [23,24]. Another growth factor is EGFR, which upon binding, 
dimerizes and transphosphorylates tyrosine residues, that allows 
for signal transmission using various cascades. The increase in the 
levels of EGFR as well as its closely related receptors, such as HER2 
and HER3 are responsible for the pathogenesis of human pancreatic 
cancer [25,26]. Moreover, several ligands related to the EGFR such 
as heparin binding EGF-like growth factor and TGF-α are also 
over expressed in pancreatic cancer [27]. The TGF-β also has been 
found over expressed in pancreatic cancer which upon activation 
transphosphorylates intra cytoplasmic proteins SMAD2 and 3, which 
allows to form complex with SMAD4 that serves as transcriptional 
activator. SMAD6 and 7 are the members of same family that are used 
to inhibit phosphorylation of the SMAD2 and 3 [28]. 

Gene Delivery System
Mainly three predominant types of approaches have been utilized 

to achieve the effective gene delivery. They include viral vectors, non-
viral vectors and physical methods (Figure 3) [29]. The most efficient 
gene transfer till date has been achieved by using viral vectors; hence 
they are widely used in cancer gene therapy protocol. Further, the 
viral vectors not only carry genes efficiently into the cells, but also 
some of the viruses are able to replicate in and destroy tumor cells 
which are known as oncolytic viruses. However, they suffer from some 
disadvantages such as potential toxicity, immunogenicity, smaller 
sized foreign DNA incorporation efficiency and need of packaging 
cell lines for production, which limits their wide applicability. 
Whereas non-viral vectors or physical methods are beneficial in 
terms of manufacturing, handling, no risk of recombination, low 
immunogenicity and capacity to insert large DNA. However, they also 
suffer from loopholes such as less effectiveness and lack of targeting 
potential. Recently, mesenchymal stem cells and hybrid vectors have 
been studied as a novel gene delivery system. Moreover, the choice 
of the optimal delivery route also greatly influences the gene therapy 
outcomes. The various delivery routes with their pros and cones are 
shown in Figure 4. 

Viral vectors
Adenovirus: The adenovirus belongs to the family adenoviridae. 

It possesses an icosahedral protein shell enveloping approximately 
34-48 kb long, linear, double-stranded DNA genome. They are about 

Figure 3: Various approaches/delivery systems for pancreatic cancer gene 
therapy.

Figure 4: Delivery routes for pancreatic cancer gene therapy.
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70-90 nm in diameter. Among all 51 serotypes, adenovirus type-2 
and type-5, belong to subgroup C and are commonly used vectors 
for gene therapy as well as oncolytic agents. They are genetically 
stable, conformable to high-titer production as well as purification 
(1013 particles/ml), able to express gene of interest and efficient 
at entering in both, cell and nucleus. By deleting E1 and E3 genes, 
the viral replication and immune response stimulation become 
incompetent. Upon deleting, they are able to carry up to 7.5 kb of 
foreign DNA. Recently, conditionally replicative adenoviruses have 
been engineered for cancer therapy by retaining its E1A region which, 
allows for replication and are able to spread within tumor tissues. 
This strategy has been successfully used for pancreatic cancer in-vitro 
murine model [30]. Moreover, the alteration has been carried out in 
adenoviral envelope fibers to increase its attachment in CAR receptor 
deficient pancreatic ductal cells [31,32].

Retrovirus: Retroviruses are the single stranded RNA containing 
enveloped viruses, which upon deletion of selected gene become non-
replicative and non-immunogenic. It contains the gene such as env 
(envelope – encodes surface protein which determines specificity of 
cell type), gag (group-specific antigen – encodes core and structural 
proteins) and pol (polymerase – encodes integrase, protease and 
reverse transcriptase), psi (encodes for packaging signal). It creates 
cloning capacity of 8 kb by deleting gag, pol and env genes [33]. Upon 
infection to target cell, they release viral content in host cell, where 
reverse transcriptase transcribes the RNA into DNA, which integrates 
into host cell’s genome and expresses the transgene of interest for 
long term. The moloney murine leukemia virus has been used as gene 
delivery vector for pancreatic cancer [34]. Also, the attempt has been 
made to modify env gene as well as packaging cell line for improving 
cell specificity to target the vector [35,36].

Lentivirus: Lentiviruses are group of retroviruses which can 
replicate in non-mitotic cells such as human immunodeficiency 
virus type-1. The vectors only deliver therapeutic gene to the target 
cells and are able to integrate in both replicating and non-dividing 
cells. However, integration of the therapeutic gene into the viral 
genome occurs randomly. Liu et al. studied the lentivirus mediated 
RNA interface targeting the high mobility group A1 over expressed 
pancreatic cancer cell line, for increasing the sensitivity of gemcitabine 
[37]. Although, no clinical trials using lentiviral vectors have been 
conducted, but vectors based on lentivirus may prove an attractive 
alternative for pancreatic cancer gene therapy.

Adeno-associated viruses (AAVs): AAVs are small, non-
enveloped, non-immunogenic, non-pathogenic, single stranded DNA 
containing parvoviruses. They mandatorily require the coinfection 
with herpes virus or adenovirus for successful replication. The wild 
type version integrates on to the chromosome 19 of the host genome. 
The engineered AAVs lose specificity and replication potential by 
deletion of the cap and rep genes which encodes for structural and viral 
replication proteins, respectively. The deleted space is able to carry 4.5 
kb of foreign gene. They are efficient in transuding both replicating 
and quiescent cells. Their low cloning potential can be overcome by 
coinfection with two AAVs, each carrying half gene of interest. Long 
term transgene expression by using AAVs in transduce tissue has 
been reported [38]. AAVs based vectors have been successfully used 
in the treatment of pancreatic cancer [39,40]. 

Replication-competent oncolytic adenovirus vectors: All 
the above viral vectors are replication incompetent. Hence, the 
transduction of target cell does not subsequently transduce in 
neighboring cell. To achieve the desired goal, replication competent 
viral vectors have been evolved. They replicate preferentially to increase 
number of transducing cells, and therefore lyse cancer cells while 
sparing healthy tissue [41]. The ONYX-015 is a mutant adenovirus 
which preferentially replicates in tumor cells lacking functional p53. 
It is made by deleting of E1B gene from the genome of adenovirus. It 
kills tumor cell by general lytic action of the replicating adenoviruses 
within tumor cells. In a phase I/II clinical trial, intra tumoral injection 
of ONYX-015 by using endoscopic ultrasonography in combination 
with intravenous gemcitabine in patient showed effective results [42]. 
The use of ONYX-015 has proven safe enough and has successfully 
entered in phase-III clinical trials [43,44]. These promising results 
indicate that oncolytic virus therapy could be a practical approach for 
treatment of pancreatic cancer.

Non-viral vectors
Liposomes: Liposomes are consisting of spherical lipid vesicles 

with a bilayer membrane structure composing of amphiphilic lipid 
molecules. Various cationic lipids have been used for the preparation 
of cationic liposomes. The anionic DNA binds with cationic lipid 
by electrostatic interactions and forms complex, which is known 
as lipoplex. They offer protection during the gene delivery. The 
cationic charge favors the fusion of liposome with the target cells, 
which enables endocytosis and subsequent delivery of DNA to the 
cytoplasm, by dissociation of anionic lipids of the cell. However, the 
problems such as transient transgene expression due to controlled 
entry into nucleus, lack of targeting specificity and physical instability 
limits its applications [45]. The targeting problem can be overcome 
by direct delivery to the organ of interest or by using tumor specific 
promoter to regulate expression of desired gene. Intra peritoneal 
administration of lipoplexes also found to be effective in peritoneal 
dissemination of pancreatic cancer containing mice model [46,47].

Polyplexes and dendrimers: The cationic polymers such as 
heterogeneous poly-L-lysine (PLL) [48], polyethyleneimine (PEI) 
[49,50] and oligopeptides [51] get bound with the DNA and form a 
polymer-DNA complex which is known as the polyplex. Dendrimers 
are the highly branched synthetic polymers, having spherical shape. 
They can exist in linear or branched polymer of varying length, but 
linear polymers are resistant to degradation, more efficient for DNA 
condensing and exhibit enhanced endosomal uptake [45]. The target 
specificity of the Polyplexes can be increased by incorporating the 
receptor-specific antibody or ligands protein. The PEI is the most 
commonly used high density amine group containing polymer 
which can easily attract water, causing rupture of the endosome, 
thereby releasing DNA in cytoplasm. Plasmid complexes with PLL 
and chimeric protein for targeting the EGF receptor showed elevated 
expression of plasmid as compared to non-modified Polyplexes [52]. 

Physical methods for delivery of naked DNA
Naked DNA can easily be developed by the bacteria in the form 

of plasmid which has unbounded therapeutic insert size. However, 
lack of tumor specificity and low capability of transgene expression 
makes it less efficient compared to adenovirus or AVVs. The simplest 
method for delivering naked DNA is direct local injection to target 
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sites. DNA are either complexes or coated with the gold particles and 
are bombarded on the target tissue by accelerating to high speeds 
using a vacuum pump or a helium propellant, which results in direct 
penetration through cell membrane and initiation of the effect of 
foreign DNA. This technique is known as gene gun approach. Various 
techniques have been developed for improving the uptake of DNA by 
increasing the cellular permeability. By using the ultrasound and the 
electroporation techniques, higher cell membrane permeability can 
be achieved. The naked DNA also can be delivered by hydrodynamic 
injection which involves the rapid injection of large volumes of genetic 
material using high pressure. The high pressure on the endothelium 
helps in improving uptake by transient localized occlusion of blood 
vessels [53]. However, hydrodynamic gene delivery is well tolerated 
by rodents only and is not a successful option for humans.

Other methods
Hybrid vectors: Hybrid vectors have been engineered to 

overcome the difficulties associated with both viral and non-viral 
vectors. Virosomes are the type of hybrid vectors which comprise of 
the liposomes and viral antigens (e.g. influenza virus) embedded in 
the lipid bilayer. They have added advantage of both the vectors such 
as improvement of cellular binding of particles due to liposomes and 
the ability to stimulate the host cell anti-tumor immune response due 
to viral antigens.

Mesenchymal stem cells: Mesenchymal Stem Cells (MSCs) are 
non-hematopoietic precursor cells derived from bone marrow, which 
have the function of maintaining and regenerating connective tissue 
via engraftment. They have drawn significant attention due to their 
accessibility, tumor-oriented targeting capacity, and the feasibility of 
auto-transplantation [54]. Its multi potentiality makes it a common 
choice as vector for efficient gene therapy. The MSCs have successfully 
been used for gene delivery in glioma, melanoma and breast cancer 
[55]. Lentivirus-transduce MSCs have been used in targeting human 
orthotopic pancreatic tumor xenografts in nude mice models [56].

Targeting of Pancreatic Cancer Cells
Effective gene therapy in pancreatic cancer mainly depends on 

the transduction efficiency of the desired gene and its selectivity for 
the targeting cells. Various efforts have been made for effective gene 
therapy by modifying the vectors for targeting the pancreatic cancer 
cells. The tumor targeted delivery of gene with the help of viruses is 
achieved by two ways: either surface modification (i.e., transductional 
targeting) or by utilizing tumor or tissue-selective gene promoters, 
which helps to express within the viral genome (i.e., transcriptional 
targeting).

Transductional targeting
The vector tropism is modified by target cell specific moieties 

which are able to target and infect the tumor cells. Various 
approaches such as genetic modification, pseudotyping, molecular 
conjugates etc. have been used previously. Genetic modification 
involves modification of the viral proteins which participate in the 
viral entry inside the cell. The viral entry involves the binding with 
the CAR receptor which is found in limited numbers in pancreatic 
cancer cells, as a consequence other cellular receptors are targeted 
[57,58]. The improved transduction in pancreatic cancer was 
observed by introducing the Arg-Gly-Asp (RGD) peptide into the HI 

loop of the fiber protein targeted adenovirus [59,60]. Pseudotyping or 
incorporation of the chimeric fiber in the genome of vector showed 
enhanced transduction efficiency [61,62]. High transduction efficiency 
in human pancreatic carcinoma has been observed by pseudotyping 
of the enveloping glycoproteins such as vesicular stomatitis virus 
glycoprotein of retroviral vectors [63]. Adenovirus also has been 
modified by various molecular conjugates which link the vector with 
specific cellular receptors by one adenoviral vector recognition part 
and other receptor identification part [60]. Moreover, transferrin 
targeting of liposomes conjugated with the single-chain antibody 
fragment showed enhanced efficiency of gene transfer in pancreatic 
cancer [64].

Transcriptional targeting
Tumor-specific promoters (TSPs) such as the midkine, 

cyclooxygenase-2, cancer-specific progression elevated gene-
3 promoter, urokinase-like plasminogen activator receptor, 
human telomerase reverse transcriptase (hTRET) etc. are used for 
transcriptional targeting in pancreatic cancer cells. TSPs have been 
used to drive the E1 and/or E4 adenoviral genes, thereby controlling 
the gene expression and viral replication in pancreatic cancer cells 
[65-68]. The carcinoembryonic antigen promoter or the tissue specific 
insulin promoter with modified adenoviral vector has been used 
to target TK gene expression in pancreatic tumor [69]. Moreover, 
intravenous administration of liposomes containing the modified 
cholecystokinin type-A receptor promoter (CCK/Mpd) driven Bik 
mutant (Bik-DD, T33D/S35D) exhibited pancreatic cancer specific 
activity in nude mice xenograft model [70]. 

Gene Therapy Strategies
Antisense strategy

This strategy aims to prevent the transcription, translation, or 
processing of cancer-associated genes. It involves the production 
of oligonucleotides which are short sequences of deoxynucleotides 
and bind to target DNA or RNA sequences in complementary 
fashion. The binding results in inhibition of gene expression, 
thereby inhibition of the production of proteins. However, it suffers 
from some problems such as limited and nonspecific delivery of 
oligonucleotide as well as stability issues in-vivo. Funatomi et al. 
studied the delivery of antisense oligonucleotide to pancreatic cancer 
cell line with overexpressed amphiregullin, a ligand of EGFR and 
found dose dependent inhibition of tumor cells [71]. The ribozymes 
are the catalytic RNA having endonuclease activity and they can also 
be used to target specific RNA molecules. They have been shown to 
be effective modulators of gene expression in pancreatic cancer [72].

Replacement of tumor suppressor genes
The replacement of tumor suppressor genes such as p53, p16 and 

SMAD4/DPC4 is one of the obvious strategies for gene therapy. The 
human wild type p53 gene has successfully been transduced in the 
pancreatic cancer cell line by using adenoviral and retroviral vectors, 
resulting in growth inhibition and induction of apoptosis [73-76]. In 
addition, proapoptotic gene p73, upon over expression binds with 
p53 DNA and activates p53 genes which induce cell cycle arrest and 
apoptosis [77]. The p16 gene transduction was also observed in the 
various pancreatic cancer cell lines [78]. The transfer of SMAD4 gene 
by using adenovirus to pancreatic cancer cell line deficient of SMAD4 
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showed restoration of expression of SMAD4 with tumor growth 
inhibition [79].

Gene-directed enzyme prodrug activation therapy 
(GDEPT)

It is also known as the suicide gene therapy. It involves the delivery 
of the desired gene to tumor cells which upon expression, activates the 
enzyme. Subsequently, a non-toxic prodrug is administered which 
is activated by the enzyme, produced in the tumor cells only. The 
selective accumulation of the activated drug in higher concentrations 
in tumor cells produces apoptosis in tumor tissues without affecting 
other normal tissues. The herpes simplex virus thymidine kinase 
(HSVtk)/ganciclovir system is the most well-known paradigm for 
suicide gene therapy. HSVtk monophosphorylates the guanosine 
analogue of ganciclovir, which gets converted into tryphosphorylated 
form by cellular guanylate kinases and blocks the DNA synthesis 
thereby, inducing apoptosis. Adenoviral delivery of HSVtk along 
with ganciclovir in human pancreatic cancer cells bearing nude mice 
showed effective results [80]. Wang et al. showed the decrement 
in survival of tumor cells treated with suicidal gene therapy [81]. 
Makinen and coworkers similarly observed constructive results in-
vitro and in-vivo [82]. Another kind of GDEPT therapy involves the 
delivery of cytosine deaminase enzyme gene by linking with oncogene 
ErbB2 promoter along with 5-fluorocytosine [83]. 

Immunotherapy
The immune system plays an important role in control of the 

growth of cancer cells. However, pancreatic cancer cells are relatively 
poor immune stimulators thus are unable to activate the host immune 
system. Various attempts have been made by using recombinant 
DNA technology to increase the level of immunogenicity of tumor 
cells to activate the immune system against the cancer cells growth. 
Immunotherapy may be passive or active. Passive immunotherapy 
includes the use of in-vitro developed antibodies or effector cells as 
anti-tumor agent whereas active immunotherapy includes the use of 
vaccination to activate anti-tumor activity. Peplinski et al. delivered 
recombinant vaccinia virus in mice having pancreatic cancer which 
resulted in encoding of human interleukin-1 (IL-1) and decrement in 
tumor size [84]. Various strategies have been used for immunotherapy 
such as genetic modification of the cancer cells in such a way that they 
express cytokines or costimulatory surface molecules which attract 
antigen to tumor site and activate killer T cells. The murine pancreatic 
cancer cells have been transduced retrovirally to express IL-2, IL-
4, IL-6, IL-12, IL-15 and TNF-α which could induce an antitumor 
immune response, resulting in tumor arrest and long-lasting 
immunity [85-88]. The enhanced cytotoxic T lymphocyte response, 
thereby, enhanced immune response was observed by injecting the 
antigen presenting cells (APCs) with synthetic mutant RAS peptides 
in pancreatic cancer patients [89,90]. Immunotherapy using vaccine 
has not been much explored. However, delivery of cancer associated 
antigens with recombinant viral vectors as well as other immune 
stimulatory genes to produce an antigen-based vaccine is under 
development [12,91]. 

Anti-angiogenesis strategy
Tumor growth is dependent on angiogenesis i.e. new blood 

vessel formation which involves the VEGF family of proteins and 
receptors. They are commonly over expresses in 90% of pancreatic 

cancers. The inhibition of angiogenesis by replication-competent 
adenovirus is one of the strategies to suppress the tumor growth. The 
anti-VEGF ribozyme mediated transfection in human pancreatic 
cancer cells showed suppression of growth and metastatic potential 
[90]. As the soluble form of flt-1 VEGF inhibits the activity of VEGF, 
the adenovirus encoding soluble flt-1 VEGF was delivered in rodent 
bearing pancreatic cancer and was found to inhibit proliferation of 
tumor [92]. Natural killer transcript 4 is an antagonist of HGF which 
binds with the c-Met-encoded receptor, commonly over expresses 
in 61-87% of pancreatic cancers. By inhibiting the HGF binding, 
angiogenesis can be arrested in tumor cells [93]. AS-3, VEGF 
antisense oligonucleotide also has been tested in mice implanted with 
human pancreatic cancer cells and showed tumor suppression [94].

Tissue inhibition of matrix metalloproteinase (TIMP)
Matrix metalloproteinases are overexpressed in pancreatic cancer 

and are responsible for degradation of basement membrane, thereby 
developing local invasion and metastases [95]. The pancreatic cancer 
cell line has been transduced with a vector coding for the TIMP-1 
and was found to inhibit tumor growth with decreased level of 
implantation, metastasis, and angiogenesis [96].

Apoptosis targeting strategy
Apoptosis also known as programmed cell death, frequently 

associates with the human malignancy and therefore, is suitable 
target for cancer treatment including gene therapy. Tumour necrosis 
factor-related apoptosis-inducing ligand (TRAIL) is well known for 
producing apoptosis in tumor cell without affecting normal cells. 
Adeno viral vector driven by hTRET promoter suppresses tumor 
growth in Mia-Pa-Ca2, BxPc3, Panc1 and AsPc1 pancreatic cancer 
cell lines [97]. It also produces synergistic apoptosis in pancreatic 
cancer cell line when given in combination with gemcitabine [59]. 
The bcl-2, an antiapoptotic gene is highly expressed in most of the 
pancreatic cancers [98, 99]. Followed by delivering the bcl-2 specific 
siRNA, transfection, antiproliferation and proapoptic effects have 
been seen in pancreatic cancer cells without affecting normal one 
[100].

Micro RNAs
The modulation of micro RNA function is a potential strategy 

to kill tumor cells as they control gene expression for the various 
physiological processes such as proliferation, differentiation and 
apoptosis. Micro RNAs are ~22 nucleotides containing small, 
endogenous, non coding RNA molecules, which might act as tumor 
suppressors or down regulating oncogenes [101]. More than 100 
miRNA precursors such as miR-10, miR-21, miR-155, miR-106a, miR-
34a and miR-127 are aberrantly expressed in pancreatic cancer [102]. 
The increased apoptotic responses and sensitivity to gemcitabine 
were observed by antisense inhibition of miR-21 in pancreatic cancer 
[103]. However, limited studies have been conducted by using micro 
RNA treatment approach in pancreatic cancer.

Future Perspective
Gene therapy allows an incredible diversity of treatment 

possibilities. This diversity can be utilized to complement traditional 
therapies, by acquiring the radically new frontiers for effective 
treatment. Current gene therapy trials have demonstrated statistically 
significant survival improvements in preclinical studies. However, 
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the limited number of clinical trials indicates difficulty from moving 
lab to clinic (Table 2). The disseminating nature of pancreatic cancer 
at the time of diagnosis indicates the need to develop an effective 
therapy and there are still a few areas that can be improved. One of 
the great interesting and promising strategies is to develop clinically 
successful oncolytic viruses and micro RNA based therapy. These 
studies have provided very encouraging signs that current research 
is on the right developing path having significant impact on clinical 
setting. The combination of the developed gene therapy with the 
existing cytotoxic agent will be more interesting for the development 
of successful treatments of pancreatic cancer. By incorporating the 
basic knowledge of genetic targets of the pancreatic cancer, it will 
become possible to bring a more potent, sophisticated, personalized 
and selective anti tumoral gene therapy having clinical applicability. 

Conclusion
Pancreatic cancer is a belligerent and malignant disease with 

limited prognosis. All existing therapeutic strategies are relatively 
ineffective in improving the survival rate except surgical resection 
which is possible in very small number of patients. The advancements 
in the cancer gene therapy including the suitable vector, molecular 
targets and target selectivity as well as detailed understanding of 
the genetics of the pancreatic cancer, eased the development of new 

therapeutic modalities. However, clinical success of the gene therapy 
is limited due to involvement of the several genes which impedes the 
complete cure of the disease. By applying multimodality approach 
through incorporation of newer therapeutic strategies with existing 
therapies and incorporating the improved delivery vector having 
targeting potential becomes the more prolific approach, which may 
further improve the efficacy in treatment of pancreatic cancer.
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