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Abstract

Background: Hemodialysis (HD) is the most common form of treating 
patients in the End-Stage Renal Disease (ESRD). The most common approach 
to measuring the effect of oxidative stress has been to measure the activity 
of Glutathione Peroxidases (GSH-Px), Superoxide Dismutase (SOD) and the 
product of lipid peroxidation – Malonyldialdehyde (MDA). In Chronic Kidney 
Disease (CKD) patient’s Selenium (Se) level in blood is frequently lower than 
in healthy subjects and it decreases gradually with the progress of the disease. 

Aim: The aim of our study was to examine whether the administration of Se 
to patients on HD alters the activity of GSH-Px and SOD in red blood cells and 
the level of MDA in plasma.

Patients and Methods: Our study involved 3 groups of subjects: 1) 52 
CKD nondialyzed patients, 2) patients in ESRD supplemented for 3 months 
with Se-rich yeast, 200 μg/day (n = 30) or placebo (n = 28) and 3) 52 healthy 
subjects. The GSH-Px and SOD activities in red blood cell hemolysates and lipid 
peroxidation products [expressed as Thiobarbituric Acid Reactive Substances 
(TBARS)] in plasma were assayed.

Results: GSH-Px activity in RBCs was significantly lower in nondialyzed 
CKD patients as compared with control group, but was even more reduced 
in patients on HD. SOD activity in red blood cells was significantly lower in 
patients in ESRD than in the healthy subjects and in the nondialyzed patients. 
Se supplementation to the HD patients has no effect on the change in SOD 
activity. TBARS level in plasma in patients on HD was significantly higher than in 
the control group and in nondialyzed patients. Se administration did not reduce 
this level. 

Conclusion: Se supplementation to patients on HD has no effect on the 
activity of SOD in red blood cells and does not prevent lipid peroxidation.
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linked to DNA damage due to oxidative stress [9]. The relationship 
between DNA damage and cancer development has been widely 
documented [10].

Hemodialysis is the most common form of treatment for 
End-Stage Renal Disease (ESRD) patients, and is associated with 
considerable mortality due to cardiovascular disease and cancer 
[11,12]. The most common approach to the measurement of oxidative 
stress and free radicals has been to measure the products of lipid 
peroxidation and PUFA oxidation – the level of Malonyldialdehyde 
(MDA) [13], as well as the activity of antioxidant enzymes. The body’s 
defenses against lipid peroxidation include the enzymes: superoxide 
dismutases (SOD; EC 1.15.1.1), glutathione peroxidases (GSH-Px; EC 
1.11.1.9) and catalase (CAT; EC 1.11.1.6) [3]. These enzymes destroy 
dangerous products of oxygen metabolism. 

Introduction
Oxidative stress is defined as an imbalance between prooxidants 

and antioxidants in favor of the oxidants, potentially leading to 
damaging biological systems [1,2]. Oxidative stress is present and 
its markers can be measured in both healthy people and those 
with various clinical disorders [3]. Oxidative stress has been linked 
with damaged proteins, DNA, lipids in cell membranes (mainly 
unsaturated fatty acids; PUFA) and carbohydrates [3], and thus 
leads to the progression of several diseases including cardiovascular 
diseases, cancer, Chronic Kidney Disease (CKD) and others [4]. Most 
importantly, oxidative stress is believed to promote the endothelial 
dysfunction and atherosclerosis and, therefore, cardiovascular 
complications [5]. Free radicals formed during oxidative stress are 
also responsible for DNA damage and, as a consequence, for cancer 
development [6-8]. Long periods of Hemodialysis (HD) treatment are 
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Superoxide dismutases play a central role in catalyzing the 
spontaneous dismutation of superoxide (O2 

•−) into oxygen and 
hydrogen peroxide [14]. Thus, they are an important antioxidant 
defense in nearly all cells exposed to oxygen. Hydrogen peroxide is 
then destroyed by GSH-Px and CAT [15]. 

 Selenium (Se) is an essential trace element required in 
microgram amounts by all mammals. It is incorporated in the form of 
Selenocysteine (Sec) into 25 selenoproteins [16]. Enzymatic activity 
has been assigned to 12 of these selenoproteins, and some of them 
have antioxidant activities [17]. GSH-Px is the most extensively 
characterized selenoprotein, being found in Red Blood Cells (RBC) 
and cytosol of nearly all tissues of mammals, birds and several other 
organisms. It is called classical GSH-Px (cGSH-Px or GSH-Px1) 
[18-20]. Five isoforms of GSH-Px have been identified [21], two are 
present in the blood: GSH-Px 1 present in red blood cells and GSH-
Px 3 present in plasma. Both have a tetrameric form and contain one 
selenium per subunit (or four gram atoms of Se per mole of enzyme) 
in the form of Sec [22-24].

Zinc (Zn) is incorporated in the catalytic site of several hundred 
metaloproteins [25]. Copper (Cu) is an essential element for all living 
organisms, serving as a cofactor for many important metaloproteins 
and enzymes [26]. Cu and Zn form the active site of one of the forms 
of SOD – Cu2+/Zn2+ SOD (called SOD 1), present in cytosol and red 
blood cells [27]. Concentrations of Se and Zn in blood plasma of CKD 
patients are decreased [28,29] but the status of copper does not seem 
to be influenced by CKD [30].

The aim of this study was to determine the activity of SOD and 
GSH-Px in RBCs, the levels of Zn, Cu and MDA concentrations in 
plasma of HD patients supplemented for 3 months with 200 µg of Se 
per day. 

Materials and Methods
Patients and controls 

A 3-month, randomized double-blind, placebo-controlled trial 
was carried out. The study involved 3 groups of subjects. Group 1 
comprised of 52 of CKD nondialyzed patients in different stages of 
the disease (creatinine level: 1. 00 – 10.99 mg/dL; mean: 5.16 mg/
dL); group 2: 58 CKD patients in ESRD (creatinine level: 4.20 – 16.60 
mg/dL; mean: 9.43 mg/dL) on regular HD, divided into 2 subgroups: 
30 patients supplemented with 200 µg Se/day in the form as high-
Se yeast tablets (produced by Pharma Nord, Bioselenium, Denmark) 
for 3 months, and 28 patients supplemented with placebo tablets 
containing identical yeast with no added Se (Pharma Nord). The 
patients were dialyzed 3 times a week for 4 hours. Group 3 consisted 
of 52 healthy subjects. The study was approved by the Institute 
Ethics Committee for Medical Research (No. 18/2003) and all the 
participants gave their written consent.

Methods 
Blood samples were drawn from all the participants into 

vacutainer tubes containing lithium heparin as an anticoagulant. 
From the healthy controls and the patients with CKD not on dialysis, 
blood was taken once, and from the patients undergoing dialysis, 
three times: before starting the study and after 1 and 3 months of 
tablets supplementation. Blood was centrifuged (+4o C, 5 000 
r.p.m., 10 min), the plasma was harvested and stored at –20oC until 

analysis. The red blood cells were washed three times with an excess 
of chilled 0.9% saline solution and were then hemolyzed by freezing 
and thawing and centrifuged again. Hemoglobin was measured by 
the routine cyanmethemoglobin method. Creatinine concentration 
was determined by routine laboratory method using Jaffy reaction 
(a kit produced by Cormay, Lublin, Poland). SOD activity in RBC 
hemolysates was determined according to the method of Beauchamp 
and Fridovich [31] and was expressed in U/g Hb. The GSH-Px activity 
in red cell hemolysates was assayed by the coupled method of Paglia 
and Valentine [32] using tert-butyl hydroperoxide as a substrate. One 
unit of the enzyme activity was expressed as 1 mol NADPH oxidized/
min/g Hb of hemolysate (U/g Hb). Lipid peroxidation in the plasma 
was monitored by determining the end product of lipid peroxidation 
– malonyldialdehyde – described by Wasowicz et al [33]. The values 
were expressed as Thiobarbituric Acid Reactive Substances (TBARS) 
in nmol/mL. The concentrations of Zn and Cu were measured 
by flame atomic absorption spectrometry [34] using Pye Unicam 
SP9  800 apparatus. The accuracy of the method was checked with 
serum reference material (Seronorm, Nycomed, lot 704121).

Statistical analysis 
Comparisons of the levels under study were made by multivariate 

analysis of variance [35] at three time points (before the study, one 
month and three months after study). When significant differences 
were found between the groups, the differences were tested at all time 
points. The tests were based on Shapiro-Wilks’ statistics, significance 
being set at 0.05. All statistics were conducted using the STATA 9 
package.

Results
GSH-Px activity in RBCs was significantly lower in the patients 

with CKD not on dialysis (P < 0.02) as compared with the controls, 
but was even more reduced in the patients on HD (P < 0.0001) 
(Figure 1). Dialysis treatment led to an increase in GSH-Px activity in 
both subgroups, however the increase in activity was much higher (P 
< 0.0001) in the subgroup supplemented with Se in comparison with 
the placebo group (P < 0.005).

SOD activity in RBCs of the nondialyzed patients with CKD did 
not differ from the activity in the healthy controls. In the dialyzed 
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Figure 1: GSH-Px activity in RBCs of the healthy controls, the CKD 
nondialyzed patients and the patients on hemodialysis supplemented with 
placebo (white columns) and selenium (dark columns). Statistics: a, the CKD 
patients vs. controls, P < 0.02; b, the HD 0 (both subgroups taken together) 
vs. the controls and the nondialyzed CKD patients, P < 0.0001; c, HD 3 vs. HD 
0 (supplemented with placebo), P < 0.005; d, HD 3 vs. HD 0 (supplemented 
with Se), P < 0.0001.
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patients, at the baseline (both subgroups taken together), SOD activity 
was lower only by 8.5% compared with controls (P < 0.02) (Figure 2). 
Hemodialysis leads to a small reduction in enzyme activity in both 
subgroups, but after 3 months, these values were not significantly 
different from the activity found at HD 0. It should be emphasized 
that selenium supplementation to the patients on HD had no effect 
on the change in the activity of this enzyme.

Zinc concentration in plasma of the nondialyzed CKD patients 
and the patients on HD was significantly lower compared with the 
healthy controls (P < 0.0001) (Figure 3). In the dialyzed patients the 
concentration was lower than in the nondialyzed (P < 0.05). In the 
placebo group it did not change during the 3 months study. In the 
dialyzed patients Se supplementation led to a gradual increase in 
the concentration of Zn, which after 3 months had reached a value 
significantly higher compared with the HD 0 (P < 0.01).

Copper concentration in plasma in all groups was nearly the same 
and ranged from 1.27 to 1.37 mg/L (Figure 4). The values in both 
subgroups remained constant during the course of the dialysis.

 Plasma MDA concentration in the nondialyzed CKD patients 
did not differ from the values found in the control group, but 
was significantly higher in the patients on HD (Figure 5). The 
administration of Se for a period of three months to the dialyzed 
patients had no effect on the change in the concentration of MDA.

Discussion
Reactive oxygen species have been implicated in the pathogenesis 

of a broad variety of tissue injuries in various disease states. This is 
mainly mediated by peroxidation of lipids, injury of nucleic acids 
(mainly DNA) and proteins [36,37]. The first line of defense against 
ROS is SOD. There are some studies which have shown decreased 
activity of red blood cell SOD and GSH-Px in CKD patients and 
suggest that hemodialysis can produce oxidative stress which leads 
to lipid peroxidation [3,38]. The decreased activity of red blood cell 
SOD and GSH-Px in the dialyzed patients found in our study is in 

accordance with the above observations. Our and other studies have 
shown that the patients with CKD and especially those on HD have 
significantly lower Se concentration in blood components and lower 
GSH-Px activity in plasma [28,29,39-42]. 

GSH-Px reduces hydrogen peroxide and all organic 
hydroperoxides [43]. In this study we demonstrated that RBC GSH-
Px activity in nondialyzed patients with CKD is significantly lower 
compared with healthy subjects. Results of this study correspond to 
our previous study [44] and to the observations of many other authors 
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Figure 2: SOD activity in RBCs of the healthy controls, the nondialyzed 
CKD patients and the patients on hemodialysis supplemented with placebo 
(white columns) and selenium (dark columns). Statistics: a, the HD 0 (both 
subgroups) vs. the controls and the nondialyzed CKD patients, P < 0.02; b, 
HD 3 vs. HD 0, P = 0.1 (NS).
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Figure 3: Zinc concentration in plasma of the healthy controls, the 
nondialyzed CKD patients and the patients on hemodialysis supplemented 
with placebo (white columns) and selenium (dark columns). Statistics: a, the 
CKD nondialyzed patients and the HD 0 (both subgroups taken together) vs. 
the controls, P < 0.0001; b, HD 0 (both subgroups) vs. CKD, P < 0.05; c, HD 
3 (+Se) vs. HD 0 (+Se), P < 0.01.
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Figure 4: Copper concentration in plasma of the healthy controls, the 
nondialyzed CKD patients and the patients on hemodialysis supplemented 
with placebo (white columns) and selenium (dark columns). Statistics: There 
were no statistical differences between the groups.
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Figure 5: TBARS concentration in plasma of the healthy controls, the 
nondialyzed CKD patients and the patients on hemodialysis supplemented 
with placebo and selenium. Statistics: a, HD 0 (both subgroups taken 
together) vs. the healthy controls and the nondialyzed CKD patients, P < 
0.05.
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[3,36,45-48]. However, studies of several other authors presented 
conflicting results on the red cell GSH-Px activity in the CKD patients 
[29,49-51].  

Red blood cell GSH-Px is synthesized during erythropoiesis, and 
is not dependent on kidney function [52] therefore it is not clear why 
in these patients its activity is reduced. It seems very likely that the 
main reason for this is selenium deficiency [29,39,42,53]. 

Montazerifar et al [3] have shown that in the dialyzed patients 
RBC GSH-Px and SOD activity was more than two times lower 
compared with the controls and decreased markedly (by about 50% 
and 33%, respectively) after HD (P < 0.0001). The authors believe that 
dialysis reduces the antioxidant defense of the organism. 

There is a dearth of publications on the effect of Se supplementation 
to CKD patients.

In the literature there is no clear opinion concerning the 
administration of selenium to patients on HD. Some authors suggest 
that Se should be administered to these patients [54-56], although 
it has little or no effect on the GSH-Px activity in plasma [42,57]. 
Due to the antioxidant properties of Se incorporated in some other 
selenoenzymes, it has been suggested that supplementation of this 
element might be of benefit and efficacious in reducing cardiovascular 
complications in uremic patients [58]. Koenig et al [36] believe that 
Se supplementation improves the oxygen radical scavenger system 
and increases selenium concentration in blood and the activity of 
selenium dependent GSH-Pxs in other tissues. Thus, Se should be 
considered for micronutrient supplementation in patients on chronic 
HD therapy. 

Our group studied the effect of Se supply on plasma GSH-Px 
protein level in plasma [39] and on protection of DNA against ROS in 
lymphocytes in the patients on HD [9]. In a few studies conducted by 
other authors, the patients on HD were administered with different 
preparations and doses of Se and for different periods of time. For this 
reason, the results presented differ widely from each other. 

In our study, RBC GSH-Px activity, in the patients on HD 
receiving Se for three months rose from 18.4 to 25.1 U/g Hb (P < 
0.0001). Koenig et al [36] supplemented intravenously to the dialyzed 
patients with 400 µg sodium selenite three times a week for eight 
weeks and have shown that RBC GSH-Px activity rose significantly 
(from 16.5 to 24.2 U/g Hb; P < 0.001). The authors believe that based 
on the conclusions presented above, Se should be administered to the 
CKD patients.

Superoxide dismutase plays a major role in protecting the cells 
against oxidative stress 

This occurs in the patients on HD and is linked to the acceleration 
of tissue damage in ESRD [59]. SODs work in conjunction with 
CAT and GSH-Pxs to diminish the harmful effects of ROS [60]. The 
activity of SOD varies among tissues. The highest levels are seen in the 
liver, kidney and spleen [37]. Vaziri et al [61] have shown that in rat 
kidney tissue with surgically induced CKD, Cu/Zn SOD activity was 
significantly lower (by 55%) compared to sham operated rats.

Studies on the activity of SOD in RBCs in the patients on HD 
have provided different results. Our results have shown that in the 

nondialyzed CKD patients RBC Cu2+/Zn2+ SOD activity was the same 
as in the control group but was significantly lower in the patients on 
HD. Results of our study are fully consistent with the observations 
of Ceballos-Picot et al [40] who have also shown that the activity of 
this enzyme was the same as in the controls and was not affected by 
the progression of renal failure, but in the patients on HD the activity 
was significantly lower (P < 0.001). Similar to our results Atamer et al 
[62] did not find significant difference in RBC SOD activity between 
the CKD patients and the control group. Koca et al [63] showed that, 
similarly to our results, SOD activity in red blood cells in the dialyzed 
patients is significantly lower than in the healthy controls. Prolonged 
exposure to HD (up to 11 years) had no effect on the SOD activity. 

Our study has shown that dialysis had little effect on the RBC 
SOD activity: After three-month treatment the activity decreased 
insignificantly in both subgroups [by 11% (controls) and 9% (+Se)]. 
Se supplementation to the HD patients had no effect on the activity of 
this enzyme. Quite different results were obtained by Koenig et al [36] 
and Mimic-Oka et al [49]. Koenig’s group has shown that in the CKD 
patients on HD, SOD activity in RBCs was significantly higher (P < 
0.001) than in the control group. With regard to the administration 
of Se to the dialyzed patients, the results obtained by these authors 
are consistent with the data of our study: during Se administration 
RBC SOD activity decreased slightly and rose 4 weeks after the end 
of supplementation. On the contrary, Mimic-Oka et al [49] found 
that in all stages of CKD SOD activity in red blood cells increased 
from 43% (early stages) to 81% (ESRD) compared with the healthy 
controls. The authors argue that augmentation of erythrocyte SOD 
activity, which serves a key function in the elimination of ROS, in 
the CKD patients probably, provides significant protection for red 
blood cells against exogenous and endogenous oxidant metabolites 
accumulating in the blood in chronic renal insufficiency. In another 
experiment Mimic-Oka et al [64] studied the SOD activity in plasma 
of nondialyzed CKD patients and those on HD and have shown that 
in the early stages of the disease enzyme activity did not differ from 
the control group, but in the ESRD and in the patients on HD it was 
significantly (P < 0.001) higher that in the control group. The authors 
believe that the gradual increase in the activity of SOD in plasma of 
the HD patients together with the fall in plasma GSH-Px activity may 
result in an accumulation of H2O2 and other hydro peroxides.

Several studies on the erythrocyte SOD activity presented by 
other authors [47,48,65,66] have reported lower values in patients 
on HD. Low values of the activity was accompanied by significantly 
reduced concentrations of Cu and Zn. Richard et al [47] showed also 
a high, statistically significant (P < 0.02) correlation between RBC 
SOD and Zn (r = 0.58) and SOD and Cu (r = 0.60). Mimic-Oka et 
al [67] demonstrated that in the patients on HD red blood cell SOD 
was significantly lower (P < 0.001) compared to the control group 
and nondialyzed patients. The dialysis did not affect the activity of 
this enzyme. 

According to most studies, the patients with CKD have reduced 
plasma concentration of Zn and during dialysis this concentration 
does not change significantly [cf 68]. The results of our study confirm 
these observations. In Se supplemented subgroup Zn concentration 
increased significantly in comparison to the baseline. The results of 
our observation are consistent with the data of other authors [41,69-
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72], who have also shown statistically lower levels of this element 
compared with the healthy subject. 

Our study has shown that the concentration of Cu in the plasma 
of patients with CKD and on dialysis did not differ from the values of 
the control group. Se supply to the dialyzed patients had no effect on 
plasma concentration of Cu. Our results are consistent with the data 
of Agenet et al [73] who did not show differences in the concentration 
of Cu in plasma and RBC among the dialyzed patients and the control 
group; the process of dialysis did not affect the change of these levels. 
Several authors [28,63,71,72] have shown higher levels of plasma/
serum Cu in the patients on HD.

Oxidative stress increased lipid peroxidation [74]. Thiobarbituric 
acid reactive substances are naturally present in biological specimens 
and include lipid hydroperoxides and aldehydes (mainly MDA) 
concentration which increases as a response to oxidative stress [75]. 

Studying the concentration of MDA in blood components in 
patients on HD most authors found significantly higher values of 
this compound compared with the healthy subjects. Martin-Mateo 
et al [46] have shown that in HD patients the baseline concentration 
of MDA in RBCs before dialysis was higher by 31% compared with 
the controls and after HD the concentration increased significantly 
(P < 0.001) by about 40%. Ozden et al [43] have shown that MDA 
concentration in plasma increased significantly after HD (P < 0.0001) 
by 67% compared to pre-HD values. Koca et al [63] showed that the 
concentration of MDA in plasma of patients on dialysis was nearly 
two times higher than in the control group, and during dialysis (up to 
11 years) it further increased significantly.

However, Samouilidou and Grapsa [76] showed that in the 
patients treated with HD and Peritoneal Dialysis (PD) plasma MDA 
levels were significantly higher than in the control group, but after 
HD – contrary to the above mentioned authors – the concentration 
was significantly reduced. Paul et al [48] did not find any differences 
in plasma MDA levels between the HD patients and the control 
group, while the RBCs MDA concentrations were significantly higher 
in those patients. 

Several studies have shown that administration of certain 
antioxidant compounds to the dialyzed patients prevented the 
oxidation of PUFAs. The most often used antioxidants in the dialyzed 
patients are vitamins E and C, sometimes selenium. 

The results of our study showed that selenium supplementation 
to the dialyzed patients has no effect on lipid per oxidation – TBARS 
concentration in plasma after 3-month supplementation of the 
element did not differ from the baseline values   and was the same as 
in the placebo group. 

Our results are in some way similar to the data published by 
Koenig et al [36] who supplemented the patients on chronic HD with 
sodium selenite and observed that MDA level was only temporarily 
decreased during Se supplementation, but returned to the restudy 
level after 8 weeks. In their study [36] MDA concentration in the 
patients before dialysis was profoundly elevated compared with 
the normal controls (1.68 vs. 0.36 mmol/L plasma; P < 0.001). Also 
Ardalan et al [77], who supplemented the patients on HD (two times 
a week) with capsules containing 600 µg Se (sodium selenide) and 400 

IU vitamin E found no difference in the concentration of MDA in the 
serum before and after the completion of the study.

Recently, Salehi et al [78] has shown that administration of 200 
µg Se per day (selenium yeast) to the HD patients for a period of 
12 weeks resulted in the concentration of MDA in the serum being 
significantly (P < 0.001) lower compared to the placebo group. 
The baseline concentration of MDA in both groups was the same. 
Also El-Demerdash and Nasr [79] have recently shown that Se 
supplementation (200 µg/kg BW/day for 30 days) to rats caused a 
significant decrease in the level of TBARS and an increase in SOD 
and GSH-Px activity in serum. The question about supplementation 
of antioxidants to the HD patients is open although there are some 
positive data regarding the use of moderate and safe selenium 
supplementation to those patients. In our experimental studies we 
have shown that administration of Se to the patients on HD stimulates 
the activity of GSH-Px in erythrocytes [42]. It has also been shown 
that Se administration to mammals induces the synthesis of GSH-
Px 1 in other tissues [20,80]. Se has a negligible effect on the activity 
of GSH-Px in plasma, does not induce the synthesis of this enzyme 
in the kidneys [39] but prevents DNA damage in lymphocytes [9]. 
Some authors recommend that the impaired kidney function can be 
improved by Se administration in the CKD patients, particularly in 
the patients on HD [36,78,81,82]. Zima et al [83] suggest that in the 
dialyzed patients Se supply may be beneficial (increasing glutathione 
peroxidase activity, immunostimulatory properties, cardioprotective 
effect, for the chronic renal failure patients. Supplementation with a 
trace element may be indicated when its depletion was unequivocally 
documented and when there is evidence of the positive effects of this 
element on the quality of life of the dialyzed patients. 

In conclusion, our results suggest that Se supplementation to 
patients on HD increases the activity of GSH-Px in red blood cells but 
has no effect on the activity of SOD in these cells. Se administration 
has no effect on the reduction of MDA concentration in plasma. 
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