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Abstract

Iodide is an essential micronutrient present in very small quantities in the 
human body, with a fundamental action for the adequate synthesis of thyroid 
hormones, which are critical for cell differentiation, growth and metabolism. 
In the form of iodide, iodine is widely distributed in the environment, although 
in an irregular manner, occurring in abundant amounts in the oceans and in 
coastal areas and scarcely found on islands and mountains. The diet is the 
main source of iodine, whose intake varies according to the amount present in 
soil and water and according to eating habits. Governmental policies have been 
adopted to satisfy and guarantee the necessary daily supply of iodine, such as 
fortification of industrialized salt for domestic iodine consumption or addition 
to the bread commonly consumed in a given region, or the offer of iodized oil 
to the population, or even iodine supplementation through medications. Iodide 
deficiency is the main avoidable cause of brain damage to fetuses and children, 
as well as retardation of psychomotor development. Thyroid hormones are almost 
universally involved in the development and proliferation of fetal neural tissue. 
Permanent lesions of the cerebral cortex, hippocampus and cerebellum may 
occur, with loss of, or damage to the brainstem or spinal cord, affecting cortical 
areas that integrate highly specialized stimuli, which become poorly defined on 
an anatomical basis, including silent areas of the associative cortex. One of 
the more significant metabolic problems due to dietary iodine deficiency is the 
presence of goiter (increased volume of the thyroid gland). Thyroid carcinoma is 
the most frequent endocrine neoplasia affecting the human species and plasma 
iodine concentration is related to the development of specific subtypes of this 
neoplasia. An increased prevalence of follicular carcinoma, a more aggressive 
tumor, has been observed in areas of iodine deficiency, while the correction of 
this deficiency is associated with a higher prevalence of papilliferous carcinoma, 
a less aggressive form. 

Conclusion: An ideal plasma iodide concentration is necessary to insure 
the proper mental development of fetuses and young children and to minimize 
the aggressiveness of thyroid cancer from follicular cells in humans.

Keywords: Iodide; Salt iodination; Ioduria; Iodide deficiency; Goiter; 
Thyroid cancer

Introduction
Iodine, from the Greek “iodes”, which means “violet” [1], is an 

essential micronutrient present in very small quantities in the human 
body (0.02285X10~3% adult body weight) [2,3]. It is consumed in the 
water or in food as iodine (element with no charge) or iodide (ion 
with a negative charge), which is converted to iodine in the stomach.

Iodine is a fundamental nutrient for the appropriate synthesis 
of thyroid hormones, which are critical for cell differentiation, 
growth and metabolism. It represents 65% of the molecular weight of 
Thyroxine (T4) and 59% of Triiodothyronine (T3) [4,5]. In the iodide 
form, iodine is widely distributed in the environment, although in an 
irregular form, being found in abundant quantities in the oceans and 
coastal areas and in scarce amounts on islands and mountains [6].

The diet and food supplements containing iodine are the main 
source of iodine, and its plasma levels are also partially replaced by 
iodothyronine deiodization in the thyroid cells [6-11].

For many years iodine deficiency was believed to be a problem 
limited to certain geographic regions and to some special situations 
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(nutrition or malnutrition) and was considered to have a specific 
clinical spectrum (hypothyroidism, goiter and brain damage, with the 
possible occurrence of cretinism) [12-14]. However, the reemergence 
of iodine deficiency has been observed in certain areas of industrialized 
centers, raising concern about its cognitive consequences [15,16].

This essentiality of iodine is more evident during the initial stages 
of intrauterine life, implying the need for an adequate iodine intake 
during pregnancy in order to obtain optimum fetal neurodevelopment. 
The fetus, followed by the newborn and the child in the first stages of 
life, represent the phases most vulnerable to iodine deficiency [17].

The first 1000 days of life are considered to be the window of 
opportunity for potential interventions in the prevention of damage 
to the human neurological potential, with consequences for the 
intelligence quotient (IQ) or hyperactivity with attention deficit [17]. 

Iodine intake varies according to the quantity of iodine in the soil 
and water and to the eating habits of a given region [11-13].

The World Health Organization (WHO), the United Nations 
Children’s Fund (UNICEF) and the International Council for the 
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Control of Iodine Deficiency Disorders (ICCIDD) recommend an 
iodine intake of 90 mg/day for children aged 0 to 5 years, of about 120 
µg /day for children aged 6 to 12 years, of 150 µg/day for adults older 
than 12 years, and of 250 µg/day for pregnant and lactating women 
[18]. 

In a study on Latin America, the mean iodine content in the salt 
varied outside the recommended 20-40 parts per million (ppm), 
and was greater than 78 ppm in 83% of all samples, demonstrating 
achievement in the elimination of iodine deficiency in most of the 
countries studied [19].

From 2005 on, the WHO determined that each country should 
make its own reports on the iodine deficiency situation every 3 
years. Founded in 1986, the Iodine Global Network (IGN) is now the 
authoritative voice for iodine nutrition.

Iodine requirements increase during pregnancy not only because 
of the fetal needs, but also because of the change in maternal thyroid 
physiology. Pregnancy is accompanied by significant changes in 
thyroid function. During the first phase of gestation, the chorionic 
gonadotropin produced by the placenta stimulates the maternal 
thyroid, exerting an effect resembling that of Thyroid-Stimulating 
Hormone (TSH) due to the structural homology between the 
molecules, directly stimulating the maternal thyroid. During this 
period, the fetal thyroid is fully dependent on the maternal thyroid 
[10,20-22]. Although the fetal thyroid starts its activity between the 
18th and 20th weeks of pregnancy, the fetal iodine supply continues 
to depend on the mother [23].

Gestation involves a high thyroid hormone demand and in 
pregnant women who ingest an adequate quantity of iodine the release 
of thyroid hormone reaches a new balance which is maintained until 
the end of pregnancy. The increased thyroid hormone requirements 
are satisfied by a proportional increase in the synthesis and release 
of these hormones which directly depend on maternal iodine intake 
and, the greater the iodine deficiency, the worse the maternal-fetal 
consequences [10,14,15,24-26]. An inadequate thyroid response 
has been observed in healthy pregnant women residing in areas of 
medium to moderate iodine deficiency [24-26] (Figure 1).

About 10% of ingested iodine is utilized by the thyroid in areas 
of iodine sufficiency and up to 80% is utilized in cases of iodine 
deficiency [27] (Figure 1).

Most of the daily ingested iodine is eliminated through the urine 
as ioduria, which ranges from 100 µg/L to 300 µg/L under normal 
intake conditions for nonpregnant adults, and this excretion is a good 
indicator of dietary iodine intake [27-30] (Figure 1).

The normal thyroid is the largest iodine reservoir in the organism, 
containing about 5 to 10 mg iodide, and functions as a reservoir of 
hormones and iodized tyrosine, being able to protect the organism 
from iodine deficiency for a certain period of time [28-30] (Figure 1).

In the presence of iodine deficiency, the thyroid adapts by 
increasing its uptake with an initially diffuse increase in glandular 
mass which tends to become nodular in cases of chronic deficiency, 
and by inducing preferential T3 secretion and increased TSH synthesis 
and release [30,31]. These hormones act directly or indirectly on 
many metabolic and developmental processes such as thermal and 

metabolic regulation, somatic growth and central nervous system 
growth [28-33] (Figure 1).

Excessive iodine intake on a chronic basis is also harmful, 
triggering goiter, chronic thyroiditis and subclinical hyperthyroidism 
in the exposed population [34-36].

The synthesis of thyroid hormones involves the following steps 
and utilizes the following proteins [37-43] (Figure 1):

1)	 Stimulation of follicular thyroid cells by TSH at the TSH 
receptor protein site

2)	 Active iodine transport through the basement membrane 
into the follicular thyroid cells, with a concentration of intracellular 
iodine about 20 to 50 times higher than in plasma. This is an active 
process that uses the Sodium Iodide Symporter (NIS) which functions 
as a pump, co-transporting one iodine ion together with two Na+9 
(sodium) ions and using the energy generated by Na+/K+ATPase, 
which maintains a low concentration of intracellular Na+. NIS also 
transports other ions such as pertectanate (TcO4

-), sulfocyanide (SCN-

), perchlorate (CIO4
-), and nitrate (NO3

-). Iodine transport by NIS is 
stimulated by TSH and by a mechanism of self-regulation, with NIS 
activity varying in an inverse manner in relation to intraglandular 
iodine concentration

3)	 Inside the follicular cells, iodine is transported to the 
colloid, an action performed by the protein pendrin, which acts as an 
iodine/chloride transporter. 

4)	 Iodine organification, whereby iodine is rapidly 
incorporated into the tyrosine residues of Thyroglobulin (Tg) 
(a glycoprotein representing the principal content of colloid) by 
hydrogen peroxide (H2O2), a reaction catalyzed by the enzyme 
Thyroperoxidase (TPO).

5)	 Coupling of the iodotyrosine molecules in Tg forming the 
iodothyronines T3 and T4 through the action of Tyroperoxidase 
(TPO).

Figure 1: Schematic representation of iodide in human:
a) Human healthy non pregnant adult
b) Human healthy pregnant adult
c) Human pregnant adult under restricted level of iodine intake
(from Glinoer: “Disorders of Thyroid Gland- Thyroid Gland – Development 
and Function- eds Vliet G Van, Polak M) (Endocrine development vol 10 pg 
65); Karger.
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The processes of iodine oxidation and organification and the 
coupling reaction of iodotyrosines are catalyzed by TPO, which 
utilizes the H2O2 produced by the hydrogen peroxide generator 
proteins, NADPH-oxidase – the thyroid oxidase (ThOx 1 and ThOx 
2) which are two dual oxidases (DUOX 1 and DUOX 2, the latter 
being more efficient for H2O2 production).

6)	 Colloid endocytosis, Tg proteolysis and release of free 
iodothyronines (T3 and T4).

7)	 Intrathyroid deiodination of Monoiodoyrosine (MIT) and 
Diiodotyrosine (DIT) by the enzyme Dehalogenase (DEHAL-1)

8)	 Before T4 secretion, part of it undergoes intrathyroid 
deiodination and forms T3, increasing the quantity of released T3 
and rendering the hormone synthesis more efficient 

9)	 The total plasma T4 content is about 45 times higher than 
the content of T3, with the main source of T3 production being the 
conversion of T4 to T3 by a deiodase enzyme in peripheral tissues

Iodine deficiency is the main available cause of brain damage to 
fetuses and children and of retardation of psychomotor development. 
Thyroid hormones are almost universally involved in the development 
and proliferation of fetal neural tissue. Permanent damage to the 
cerebral cortex, hippocampus and cerebellum may occur, with loss 
of, or damage to, the brainstem or spinal cord, affecting cortical areas 
that integrate highly specialized stimuli, which become poorly defined 
on an anatomical basis, including silent areas of the associative cortex 
[44-46] (Figure 1).

The period of response of the fetal nervous cells is called 
“competence” and these cells do not respond either before or after 
this period, a fact that implies a sequence of maturation that does 
not involve a sequence of independent events, but rather a cascade 
of interlinked events [47-49]. Maternal thyroid hormone deficiency 
causes gestational hypothyroidism, which in turn causes blurred 
neonatal layering [49].

Maternal hypothyroidism (increased TSH and normal or reduced 
free T4) was believed to be the factor responsible for changes in the 
fetal neurological development during the early stages of pregnancy. 
However, recent experimental studies have shown that the fetal 
neurological development is affected not only in the presence of 
maternal hypothyroidism, but also in the presence of maternal 
hypothyroxinemia during the early stages of pregnancy (free T4 
below the 2.5 percentile, with TSH within the normal reference 
range), causing brain damage [50].

Maternal iodine deficiency may lead to maternal hypothyroidism 
or hypothyroxinemia. In the presence of maternal hypothyroidism 
there is no transfer of thyroid hormone to the fetus, while this transfer 
does occur in the presence of maternal hypothyroxinemia. Early 
thyroid hormone replacement in the newborn can prevent or reduce 
fetal brain damage. Fetal brain damage can be severe in the presence 
of maternal hypothyroidism or may be medium/moderate or severe 
in the presence of maternal hypothyroxinemia [50-52] (Figure 1).

The fetal thyroid is protected from the maternal hormonal 
fluctuations by safety mechanisms such as physical barriers (placenta 
and ovular membranes) which prevent the free transfer of thyroid 
hormone from mother to fetus due to the presence of the enzyme 

decodes (particularly of type 2) in the placenta and in the fetal brain 
tissue responsible for the conversion of maternal T4 to T3 since the 
direct maternal transfer of T3 to the fetus is extremely low [53-57].

In iodine-deficient areas the organism activates mechanisms of 
self-regulation, with preferential T3 synthesis at the expense of T4 
as a way to conserve iodine, causing maternal hypothyroxinemia 
(reduced T4, maintenance of circulating T3, and TSH levels within 
the normal range). Maternal hypothyroxinemia during the first half 
of pregnany is associated with permanent and irreversible fetal brain 
damage, reflecting the maternal inability to transfer T4 to the embryo 
in an adequate manner, with permanent cognitive and behavioral 
sequelae [57-60] (Figure 1).

Human cortical development occurs between the 6th and 24th 
week of pregnancy and the thyroid hormones are directly or indirectly 
involved in most of the processes of neurodevelopment of embryo 
and fetus. This would explain the irreversible effects of this deficiency 
during early gestation [44-50].

Thyroid hormone receptors are largely expressed in neurons 
and glial cells (astrocytes and oligodendritic cells), in dendrite 
growth and synapse formation, myelinization, and migration of 
specific cells in neuronal organization (synapses, transmission, 
laminal cytoarchitecture in the cerebral cortex, and appropriate glial 
interactions) [44-46].

Government policies have been adopted in order to satisfy 
and guarantee the necessary daily supply of iodine, such as iodine 
fortification of industrialized salt for domestic consumption or the 
addition of iodine to bread in a given region, the offer of iodized oil to 
the population, or even iodine supplementation through medications.

One of the most significant metabolic problems due to dietary 
iodine deficiency is the presence of goiter (increased volume of the 
thyroid gland).

In 1918, when the United states of America were preparing 
to enter World War I, an examiner for the selection of soldiers in 
Houghton County, Michigan, rejected about 30% of the potential 
recruits due to the presence of goiter and/or hypothyroidism. A 
study conducted at that same time on schoolchildren in the state of 
Michigan detected about 47.2% of the children examined with signs/
symptoms of goiter and severe thyroid dysfunction [1].

At that time there was some debate about the severity of the 
situation around the belt of the American Great Lakes and about the 
iodine deficiency in that region. It was proposed to offer the children 
iodized syrup about 2 to 3 times a year, but that policy proved to be 
inadequate. In Rochester, New York, the proposal of adding iodine 
to the water consumed by the population of the city also failed [1].

In 1922, David Murray Cowie, a pediatrician at the University of 
Michigan, entered the fight against goiter by monitoring children with 
severe hypothyroidism and important intellectual damage leading to 
mental deficiency. One day, he had the opportunity to read a long 
monograph about the health authorities of Switzerland, another part 
of the world with iodine-deficient soil, which described a plan for 
the prevention of goiter by adding a specific amount of sodium or 
potassium iodide to the salt for domestic consumption commercially 
sold in the country. Cowie believed that, since everybody uses salt for 
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the preparation of daily foods, he could convince the salt industries 
to change their product by adding iodine to it, a measure that could 
solve a serious public health problem. However, this proved not to 
be very easy and two years of intense work and education would be 
needed in order to obtain an effect [1].

Cowie was able to achieve the result that iodine would be added 
to virtually all salt processed in and around the state of Michigan and 
the chemist of Dow Chemical Company would also demonstrate that 
the small quantity of iodine added to salt (about 0.1% of the total 
content) did not alter the flavor or function of salt [1].

Cowie, known since then as the “salt man”, convinced the 
medical class that adding iodine to salt would not increase the risk 
of hyperthyroidism or heart damage. Working with a competent 
medical team, he was able to obtain a referendum from the Medical 
society of the state of Michigan regarding the use of iodized salt and, 
in addition, he traveled around the country offering public health 
lectures for the prevention of goiter and hypothyroidism with the use 
of iodized salt. Iodized salt started to be progressively commercialized 
throughout the country and the salt industry voluntarily switched to 
the production of only iodized salt [1].

In 1980, all the consequences of the lack of iodine, ranging from 
goiter to mental retardation, were gathered under the term “Iodine 
Deficiency Disorders” (IDDs) and the measurement of UCF levels 
became the best tool to monitor population iodine deficiency status. 
In 1994, in an attempt to reduce the prevalence of iodine deficiency 
worldwide, the WHO recommended eliminating IDDs by iodizing all 
salt for human consumption [61].

The programs of industrialized salt iodination for domestic 
consumption, the strategies of iodine supplementation or fortification 
and silent iodine prophylaxis have contributed to the progressive 
eradication of iodine deficiency during the fetal life and the first 
months of extra uterine life [11,12] and have also contributed to the 
reduction of goiter.

In spite of the amelioration of iodine consumption by the general 
population of many countries, a new scenario has arisen involving 
impaired cognitive outcomes with a gamut of behavioral disorders 
such as Attention-Deficit/Hyperactivity Disorder (ADHD) or autism 
[62,63]. ADHD has been described in newborns in the presence of 
hyperthyroidism [64], iodine deficiency [65], hypothyroxinemia [63], 
and mild maternal thyroid-hormone insufficiency [66].

“Nurturing care” is the term that has been coined to include 
nutritional, environmental and emotional support to promote 
the development of key brain regions that have lifelong benefits, 
including improved health and wellbeing, and increased ability to 
learn and earn [67,68]. Adequate iodine intake is essential for this goal 
to be reached with supplementation during multiple and overlapping 
critical time-windows when development of specific capacities and 
abilities can be most powerfully enhanced [69].

Conclusion
Iodine plays a fundamental role in the human species and the 

ideal plasma concentration of this ion prevents mental retardation/
cretinism in fetuses and small children, also causing the thyroid 
neoplasias expressed by this gland to be less aggressive (papilliferous 

rather than follicular subtype). Iodine is a friendly and necessary ion 
at ideal concentrations for the human species [68-74].
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