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whose ribozymes served as polymerase for self-replication [2,3]. 
As evolution moved forward, RNA evolved into more stable DNA 
genomic storage molecules, and proteins assumed complex enzymatic 
roles when multiple structural molecules evolved. RNA branched-
off into specialized molecules serving as a bio defense network and 
a gene regulator [3]. Current research clearly supports the notion 
that the majority of the human intracellular defenses derived from 
miRNAs have their origins in transposable elements (TEs) and 
retrotransposons [3,4]. 

Our current understanding of the evolutionary history of 
the incorporation of retroelements in the higher life forms is 
just beginning to develop. However, it appears that as early as the 
emergence of Archea, retroelements were being incorporated into the 
host genome that served as intracellular defense for survival [3-5]. 
As evolution progressed, many of the retroelements became extinct 
due to their inability to find suitable hosts, and bolstered miRNA-
based defenses that would not allow them to invade or infect the host. 
The integrated retroelements now serve as a vanguard against any 
retrovirus or lentivirus that already has a unique genetic footprint in 
the genome of a host. As we will show later, exposures to lentiviruses 
and retroviruses are very common in higher animals, but they do 
not develop any illness from them. One of the reasons for this is that 
specific fragments of the integrated retroelements, which include 
retroviruses and lentiviruses in higher life forms, are strategically 
expressed in the forms of miRNAs, introns and other small anti-sense 
RNA that look for homologous sequences in the invading viruses or 
microorganisms, and disable them by various mechanisms [6,7,8-
12,3]. As the time passed these same integrated retroelements were 
co-opted to serve other gene regularity functions, in addition to the 
molecular immunity function [2-4,11-14,]. Therefore, today, these 
former retroelements serve as regulators of cellular differentiation, 
chromatin restructuring agents, and myriad other functions [2-
5,14-17]. Retroelements have profoundly affected the evolution 
of prokaryotic and eukaryotic forms [3,17,18]. The evidence of 
such evolutionary events can be seen in the presence of ~50% gene 
sequences in the human genome, and a significant percentage of 
the genomes of most contemporary life forms that share genetic 
similarities to transposable elements and retroelements, or their 
remnants [2-6,15-18].

Going back to the origins of life, amid this scene of small RNA-
based defenses and invading retroelements, the eternal host-parasite 
struggle blossomed into innumerable fauna and flora, while defensive 
means against parasites did likewise. The prime directive of speciation 
is maintenance of genome integrity but this could not be achieve 
without symbiosis of primitive retroelements and pre-transposons 
with the evolving host genomes [1,11-13]. Both miRNA- and RNA-
interference have been recorded in the earliest existing life forms 
that are present today in Archea. Perhaps one of the firsts among the 
successful protein-based defense systems, which apparently evolved 
in prokaryotic forms, used restriction enzymes to counter and destroy 
foreign DNA, all the while guarding and protecting their own through 

Thomas S. Kuhn’s Structure of Scientific Revolutions shows that 
paradigms shift when diverse aggregated evidence invites revision. 
Recent decades have witnessed the failure to formulate a classical 
immunity-based anti-HIV vaccine. We argue that resistance 
against an invading retrovirus such as HIV-1 is primarily based on 
intracellular immunity that evolved in the form of small dsRNA (e.g., 
miRNA). Lentiviruses (LVs), specifically SIVs, endemically infect 
over 40 different African non-human primates (ANHP), and provide 
useful models for HIV-1 molecular studies. Although natural hosts 
to SIVs, ANHP typically do not develop immunodeficiency or AIDS, 
they exhibit high degrees of viremia. It should be noted that the high 
degree of viremia does not kill the African nonhuman primates, 
including chimpanzees that harbor almost the same virus as HIV-
1, or make them immunodeficient [1]. And, more pointedly, why is 
our criteria for treating HIV-infected individuals with highly active 
anti-retroviral therapy (called HAART) mainly based on measuring 
the viral load and CD4+ T cell count? More importantly, only certain 
Asian macaques generally exhibit viremia and progressive loss of 
CD+ T lymphocytes. Why differences in pathogenicity exist has been 
subject of much speculation, and no conventional immunological 
approach has deciphered which viral and/or host factors account 
for ANHP resistance. We hypothesize that ANHPs find protection 
through selective and differential expressions of SIV homologous 
microRNA (miRNA) that form stable complexes with the virus. We 
also believe that a similar protective mechanism is operational in a 
small group of infected humans resistant to HIV-1 and others that 
experience long-term latency. Although retroelements have infected 
life forms that predate classical immunity’s evolution (4 billion 
versus 350 million years), these intracellular invaders are checked 
by intracellular small double-stranded nucleic acid-based defense 
mechanisms (i.e., miRNAs and/or non-coding ncRNAs). We will 
describe various aspects of this immunity in this commentary.

Evolution of Intracellular Molecular Defense
Many believe early life on earth was RNA in nature, as were 

primitive parasitic life forms (i.e., retroelements) that invaded them. 
RNA molecules performed enzymatic functions as ribozymes, 
and bioinformation storage functions as genomes. Early RNAs 
were invaded by primitive retroelements – retrotransposons – 
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help from methylation and miRNA [3,18]. Brouns et al. [19] indicate 
that bacteria began to defend themselves against retroelements as 
retroelement fragments established genomic regions, systematic 
clusters of regularly interspaced short palindromic repeats (CRISPRs) 
[19]. CRISPRs carry out the vital task of creating a veritable pathogenic 
danger list, a heritable collection of memories about prior infections. 
In Escherichia coli, the CRISR region is transcribed. Moreover, casE, 
the CRISPR-associated gene, promotes transcript cleavage into small 
~57-nucleotide CRISPR-RNAs (crRNAs).

This molecular pattern recognition system pioneered in 
distinguishing between self and non-self [19]. As DNA size increased, 
and as prokaryote evolution took a quantum leap, and evolved into 
eukaryotes, gene regulation mushroomed, and protection of self-
DNA through restriction enzymes or CRISPRs became difficult. These 
defenses lacked effectiveness against retroelements that integrated 
into their genomes, and had the ability to jump in and out of the 
host DNA, thereby creating occasional havoc [3-5,15-21]. Many life 
forms accommodated retroelements rather than fight them [3,6,7]. 
This gave birth to “molecular immunity” (MI) (small dsRNA-based 
bio-defensive systems), where small hairpin retroelements were 
expressed as double-stranded (ds) microRNAs, or small interfering 
RNAs (siRNAs), to bind homologous sequences of invading 
retroelements, split them via DICER-like (DCL) enzymatic systems, 
or block integration through triplex-formation (TF) [6,2,3,13,14]. 
This immunity has its origin in archea and prokaryotes [6,7,2-5,15-
19].

Evolution of Classical Immunity
As parasitic cellular invasion became more difficult, a new kind 

of parasites evolved that inhabited body cavities, fluids, and blood 
in larger life forms to intercept raw materials [3,6]. These parasites 
were immune to miRNAs; having never entered inside the cells, 
they were unseen by miRNA! New defenses responded to these 
invisible insurgents; perhaps as long as 300 MYs ago, Jaw fish began 
developing antibodies to counter invading antigens, giving rise to 
classical immunity [22]. 

Despite classical immunity’s development, extracellular bacteria, 
fungi, and parasites sought resources in the large hosts they invaded 
[6,7,1,8,2,3,13,14]. Meanwhile, retroelements never ceased to evolve; 
they manufactured genetic codes and countermeasures that bypassed 
miRNAs, and other small RNAs, through molecular immunity 
[6,7, 2,3,13,14,23]. Hosts evolved to block entry through viral 
receptors, modified invader genetic codes upon entry, and stymied 
retroelement’s replication cycles [6,7,3-5,15-20]. Much remains to be 
discovered. The primary defense, homologous sequence recognition, 
had served myriad hosts for eons of time [6,3-5,15-21]. Classical 
immunity has no significant effect on replication of intracellular 
viruses, since neither antibodies nor CD8+ cytotoxic cells can reach 
inside the cells [including HIV-1]. Classical immune response to HIV-
1 antigens is a normal immunological response to any antigen; it does 
not prevent replication of retroelements, retroviruses, or lentiviruses 
[1,6,7, 2-4,13,14]. This explains the innumerable reports that tout the 
effectiveness of classical immunity on HIV-1 replication (see below). 
As we will learn below, classical immunity has evolved to respond to 
any substance that is perceived to be “foreign” or “non-self” by the 
antigen processing and presenting cells. They are always imperfect 

and innumerable cases of autoimmune diseases and allergic reactions 
are the vivid evidence of such failures. Therefore, classical immune 
response to retroviral antigens is a normal physiological response, 
and not the “protective” one so badly needed [6,7,2,3,13,14].

Classical Immunity, Typically Useful but 
Lacks Utility against Retroelements

Antibody-mediated immunity (humoral immunity), and cell-
mediated immunity (CMI), and numerous vaccines based on this 
type of immunity for HIV-1 are not effective. Classical immunity 
provides normal immunological responses to “any” substance 
deemed “foreign” [24]. Molecular immunity recognizes sequences 
that share homologies with non-coding sequences of miRNAs and 
disables them [1,6,7, 2-4,13,14]. Classical immunity is based on a 
lymphocyte recognition system that, upon recognizing a substance 
as “foreign,” the body creates antibodies (Abs) or induces cell-
mediated immunity [22,25]. When viruses (or HIV-1 retroviruses), 
bacteria, or other “foreign” substances enter a human host, or 
nonhuman primate, classical immunity responds [22,23,25], but 
classical immunity is mostly limited in its recognition of extracellular 
agents [22,23,25]. Helpful against extracellular pathogens, classical 
immunity lacks the capacity to counter intracellular pathogens, and 
has no real blocking effect once the retroelements are inside the 
cells (e.g., genetic parasites such as transposons and retroviruses 
still come in and out of our genomes regularly without ever being 
detected by classical immunity but are regulated by miRNA) [26]. 
This immunity is also ineffective against non-retroelements that have 
become intracellular. Neither Abs nor CMI can effectively defeat 
mycobacterium tuberculosis, an organism covered with a specialized 
sheath that allows it to hide from classical immunity. Likewise, 
malarial parasites replicate intracellularly in host red blood cells 
(whereas miRNAs lack functionality because these cells generally 
lack nuclei) and kill over a million children annually, while over 1.2 
billion people become ill with it [27]. Retroviruses not only infect the 
target cells (CD4+ cells), but also enter the infected cells’ genomes, 
and remain dormant until they divide [1,7,14,28]. Can classical 
immunity assist hosts in this intracellular realm when it cannot 
defeat TB, malaria, leprosy, listeria and many other bacteria? Abs and 
CMI mechanisms commonly fail to recognize HIV-1 invasions. Even 
if they do, resultant antibodies can actually hinder recovery [2-3]. 
Classical immunity is ineffective inside the infected cells [2-5,24-25]. 
They can bind with viral proteins, carry viruses to macrophages, and 
welcome invaders that promote replication [29]. Recent data indicate 
that complement, non-neutralizing antibodies may counteract the 
immune response by enhancing HIV infection via complement and 
Fc-receptor-positive cells in “cis” and “trans” [30]. If strong CMI 
fights a virus, it sends two types of T cells (CD8+ and CD4+) to 
virus-producing cells. Because CD4+ T cells actually produce HIV, 
health-preserving defensive action is transformed into potentially 
life threatening offensive activity as CD8+ T cells kill CD4+ T cells, 
and uninfected CD4+ T cells become infected, in a vicious cycle of 
death [31,32]. However, this picture would not be complete if it did 
not also mention miRNAs, which quell and stymie HIV replication 
inside the CD4+ T cells and macrophages, thereby preventing the 
infected cells from HIV replication and the expression of surface 
HIV proteins, which essentially nullifies any CMI or antibody attack 
against the infected CD4+ T cells and macrophages [26,33-35]. It 
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is not because of adaptive immune responses to HIV that a human 
host survives; it is miRNAs that are protecting them! In recent days, 
the amazing protective role of miRNAs against cancer, and myriad 
viruses and other microrganisms, has come to light, and in the near 
future therapeutics based on miRNA will be used regularly.

What Are microRNAs?
MicroRNAs (miRNAs) are small non-coding RNAs that 

regulate fundamental cellular and developmental processes at the 
transcriptional and translational levels [3,7,14]. In many cancer and 
infectious diseases processes, expression of miRNAs is frequently 
dysregulated. For example, in HIV-1 infection, numerous miRNA 
are dysregulated and a similar pattern in seen with breast cancer. 
Both tumor suppressor activity, and oncogenic properties have 
been assigned to specific miRNAs, which modulate virtually all 
relevant stages of breast cancer progression, including tumor cell 
proliferation, apoptosis resistance, cancer cell migration, invasiveness 
and metastasis, tumor angiogenesis, and cancer stem cell self-renewal. 
miRNA expression has been studied by microarray profiling, bead-
based technologies, and quantitative real-time PCR in archived 
formalin-fixed paraffin-embedded tumor specimens, as well as in 
blood and serum samples, which facilitates the identification of specific 
miRNAs as novel diagnostic, prognostic, and predictive markers. 
Moreover, the investigation of single nucleotide polymorphisms both 
in putative miRNA binding sites in the 3’UTRs of target genes, as well 
as in miRNA-endoding genes, has revealed their diagnostic potential. 
In vitro experiments focusing on breast, prostate, and other cancer 
cell lines, and in vivo xenograft studies have demonstrated the efficacy 
of oligonucleotide-based over expression, and inhibitor approaches 
of miRNA-targeted experimental therapies. Numerous studies have 
identified specific targets of miRNA action in cancers, including the 
established markers Her2/neu and ERalpha, TP53, and markers of 
angiogenesis. The future application of locked nucleic acid miRNA 
inhibitors, and synergistic approaches involving conventional cancer 
therapeutics open up promising new perspectives in breast cancer 
therapy [36].

Why Move Beyond Classical Immunity?
A decade ago, classical immunity seemed logical as the primary 

vaccine model, but in the late 1990s immunity theory based on small 
dsRNA emerged [1,6]. Rooted in observations of plants and worms, 
this immunity (RNA interference or RNAi) inhibits plant viruses 
through gene silencing, and operates throughout eukaryotic life 
[3,7,14]. For their pioneering work in RNAi, US scientists Craig Mello 
and Andrew Fire won a Noble Prize in 2006 [37]. The AIDS epidemic 
invited traditional tools, but they proved woefully inadequate 
[6,7,3,29-36,38]. Drawing on studies of HIV-1-infected humans, and 
SIV-infected macaques, scholars emphasized CMI’s potential to fight 
immunodeficiency [29-36]. No study demonstrated the viability of 
either broadly-based antibody neutralization, or strong cell-mediated 
immune response [1,6-8,28,11-12,29-31]. The first major setback was 
VaxGen’s 2003 failed human trial [29,30]. Its Env-specific approach 
focused on gp120 but failed, in vitro, to neutralize primary HIV-1 
isolates, proved incapable of preventing HIV-1 infection, and exerted 
zero effect on HIV-infected participants’ viral loads [29,30]. No HIV-
1 vaccine induced broadly reactive antibodies in trials. Mainstream 
scientists, including the Neutralizing Antibody Consortium of the 

International AIDS Vaccine Initiative (IAVI), achieved flawed results 
due to flawed methodology [6,1,29-34]. Since then, there have been 
numerous trials with high media exposure utilizing various arms of 
classical immunity; all have resulted in failure [6,1,39-42,43,44].

Chimpanzees and humans
Human and chimpanzee genetic similarities justify scientific 

interest in this primate. Following HIV-1 infection, they experience 
initial viremia but no subsequent disease. This natural capacity to 
inhibit HIV-1 replication merits continuing investigation [1,6-8,28]. 
In some trials, immunized chimpanzees experienced initial viremia, 
even when high levels of CMI responses and HIV-1 neutralizing 
antibodies were present [1,6-12,28]. In others, non-vaccinated 
chimpanzees dealt successfully with viremia and remained disease 
free [1,6,7,28,45,31], which suggests molecular immunity, or some 
other immune mechanisms that we have yet to uncover [6,7].

Strain diversity and vaccine potential
A prominent explanation for failed anti-HIV vaccines is viral 

diversity. Extensive genetic variability characterizes viral isolates; 
HIV hampers effective immune reactions; and high viral load, 
replication, and mutation rates frustrate adaptive immune responses. 
Of note, SIVs endemically infect over 40 different ANHP species 
[1,6-8,28,10-12,3,23]. Among ANHP that are naturally infected with 
SIVs, hundreds of “quasispecies” (“SIV swarms”) surface within days 
of initial infection, but infection remains controlled, and the animals 
remain disease free, without AIDS [1,6,7,23, 28]. Some HIV-exposed, 
seronegative female sex workers are resistant to numerous HIV-
1 clades and types, although they have been exposed to numerous 
strains of predominant HIV-1 [36,37]. If diversity were the main 
cause of vaccine failure, naturally-resistant, exposed seronegative 
female sex workers would lose resistance to various HIVs shortly after 
a new viral exposure [36,37]. Similarly, there are literally thousands 
of health care workers, doctors, nurses, phlebotomists, dentists, and 
many other professionals who have been exposed to HIV-tainted 
blood, many by deep injections with contaminated needles, but 
only rarely has any of them seroconverted, and none has developed 
AIDS [38,46]. Why not abandon present paradigmatic ruts and focus 
increasingly on ANHP, natural hosts to various types of SIV that, 
despite viremia, escape immunodeficiency and AIDS? [6,14].

Broadly neutralizing antibodies: Development of 
antibodies against HIV-1

Contemporary vaccines have been most effective against 
pathogens for which the classical immune system elicits a robust 
antibody (B cell, or humoral, response) and/or cellular (T cell) 
immune response either against killed pathogens, or against a small 
fragment or antigenic component of a pathogen or live but weakened 
form of the infections [6,29-34,39,47,48]. This is exemplified by 
live influenza and polio vaccines that are administered to children 
and adults. Many times a killed preparation is sufficient to confer 
protection against infection or to contain the pathogens, if infection 
does occur, as with DPT and Tetanus vaccines. However, for HIV, 
although numerous vaccines have been tried, no cases of protection 
are known to have occurred. In cases of natural infection, no clearance 
has been documented [6]. Furthermore, the virus rapidly establishes 
reservoirs—in resting CD4+ T cells, in the brain and other sanctuaries, 
and through integration and latency—that are resistant to even the 
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most aggressive highly active anti-retroviral therapy [HAART]. Thus, 
HIV presents unique problems that will require a solution that either 
confers sterilizing, or close to sterilizing, immunity, and complete 
silencing elimination of newly infected cells through miRNA-based 
immunization.

Successful strategies often failed in the invention of HIV vaccine. 
The reasons behind it might be following: (a) The natural immune 
response in HIV-1 infected individuals does not clear the infection 
and there is therefore no natural immunological mechanism that 
a vaccine could mimic; (b) during HIV-1 infection, antibodies 
are mostly elicited against variable and accessible Env loops rather 
than against functionally important but less accessible conserved 
domains such as the receptors and co- receptors binding sites; (c) 
HIV-1 integrates into the host genome and establishes a latent pool 
of infected cells which conceal the virus from immune recognition; 
(d) the virus progressively destroys the immune system; (e) HIV-1 
isolates exhibit an enormous antigenic variability; (f) the immune 
system does not readily elicit bnAbs against cryptic and transient 
HIV-1 epitopes; (g) the degree of antibody affinity maturation 
required to obtain antibodies that neutralize HIV-1 is much higher 
than what is needed in the case of antibodies directed to other viruses 
[40].

It is often overlooked that every anti HIV-1 bNmAb is polyspecific 
and can bind viral epitopes different from the one identified when 
the structure of the bnMab- HIV complex was solved. There is 
therefore no reason why the particular HIV-1 epitope identified by 
crystallography should be the one that triggered the immune response 
that gave rise to the Mab. The structural parameters of effective HIV 
vaccine immunogens have not been elucidated and it is therefore 
unfortunate that an empirical approach to vaccine development is 
often denigrated since trial-and-error experimentation remains the 
best strategy for developing any vaccine [40].

Studies have shown that few continuous epitopes of viral proteins 
were able to elicit antibodies that recognized the native protein 
although most of them readily induced antibodies that reacted with 
the peptide immunogen [41,42]. Cross-reactive immunogenicity also 
play a vital role here as very few linear peptides were found to possess 
the required cross- reactive and cross- protective immunogenicity and 
it became generally accepted that the prospects of developing effective 
synthetic peptide vaccines were poor efforts [41,42]. There is also a 
fundamental difference between antigenicity and immunogenicity, 
i.e., between the chemical nature of antigen-antibody recognition 
processes and the biological nature of the immunogenic processes 
that allow a viral antigen to give rise to a protective immune response 
in a competent host [41,42].

It is proposed that extensive glycosylation of Env also reduces 
recognition of protein surfaces by neutralizing antibodies, combined 
with antibody responses to non-neutralizing epitopes elicited by 
immunodominant regions of non-native forms of Env gp120 and 
gp41, responses that further contribute to this problem. The failure 
to come up with effective vaccine in case of HIV also leads us to 
shed light on antibody polyspecificity and the relational nature of 
epitopes and paratopes. When paratope is defined solely in terms of 
residues, it is difficult to account for binding activity of an antibody 
that often depends on structural features distant from paratope itself 

[49-50]. The epitope bound to an nMab may not correspond to the 
structure that is recognized by B-cell receptors [BCRs] during the 
immunization process and it is presumed to be required in a vaccine. 
It is also known that residues in the antigen that are not in contact 
with paratope residues may be able to modulate the immunogenic 
activity of epitopes [51]. Sensitivity to neutralization by nMab 4E10 
was modulated by amino acid substitutions elsewhere in the viral 
envelope [52].

However, it should be noted that broadly neutralizing antibody 
responses against Env develop in a larger percentage of HIV-infected 
individuals than previously thought [8]. It should be noted once 
again that over 40 species of ANHP naturally exposed to various 
types of SIV completely protect themselves from these lentiviruses; 
they never develop AIDS or immunodeficiency, and do so without 
the development of neutralizing antibodies to SIV Env. Therefore, 
we believe that this 30-year long search for neutralizing antibodies 
(nAbs) is a distraction that we can no longer afford to carry on. Not 
only that, but these primates do not protect themselves with either 
Abs or CMI against SIVs, but some unknown immunity that, in 
our opinion is by molecular immunity based on miRNA [1,6,7,28, 
2,3,13,14,39,47,48].

Recently, there has been a flurry of literature from highly reputed 
investigators confirming what we suggested over a decade ago. 
Therefore, prior to recent publications conventional scientific wisdom 
held that the maintenance of healthy CD4+ T cell levels was essential 
for the success that SIV-infected sooty mangabeys routinely enjoy 
as they maintain nonpathogenicity [28]. Within the past few years, 
scholars have demonstrated a limited level of expression in sooty 
mangabeys of CCR5 on CD4+ T cells [53,54]. However, we must 
keep in mind that the SIV virus is multitropic in nature, which allows 
it easier access to multiple receptors (hence the term multitropic), 
and facilitates the infection of virtually all of the CD4+ T cells. This, 
in turn, leads to a massive depletion, at all immunological sites, of 
CD4+ T cells. Even with counts so low as to meet AIDS classification, 
sooty mangabeys have defied disease progression for between 3 and 9 
years. The search for the mechanisms that prevent such progression 
is fundamental to either vaccine or cure research. Milush, et al. [28] 
have suggested potentially important roles played by double negative 
(DN) T cells, and their potential utility in both AIDS therapeutics and 
AIDS vaccine research. These T cells create T helper cytokines, could 
help offset low CD4+ T cell levels in in sooty mangabeys, and exhibit 
a central-memory phenotype [22,26,27]. DN T research suggested 
the value of determining the presence, and levels, of DN T in human 
long-term progressors versus those with AIDS. It also suggested the 
importance of examining the potential of these T cells in dealing with 
humans with low CD4+ T cell counts. However, we believe that these 
findings may not lead toward a vaccine or toward useful therapeutics 
for humans infected with HIV-1. We still must look at immune 
defenses that are intracellular [3,6].

Reverse vaccinology and rational design of HIV-1 antigen is 
an interesting concept altogether. Attempts to design improved 
HIV-1 antigens have used as templates a small number of nMab 
that recognize different antigenic sites of the Env protein such as 
the conserved CD4- binding site [55-58], the CD4 induced (CD4i) 
antigenic site that become accessible after gp120 interacts with CD4 
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[59], the semi conserved V3 loop [60-62], the membrane- proximal 
external region (MPER) antigenic site [63] and glycan antigenic 
site [64-65]. Each antigenic site harbors a large number of different 
epitopes. So, if an immune response directed to one HIV-1 antigenic 
site is considered to represent a single specificity, this does not exclude 
that a large number of different Abs will recognize overlapping 
targets within the same antigenic region [66]. Epitopes8 in certain 
HIV-1 strains may become inaccessible to antibodies following hyper 
glycosylation, mutations or conformational changes, a phenomenon 
called antigenic masking [67]. This makes it impossible for such HIV-
1 strains to be neutralized by certain nAbs since epitope exposure is 
usually a prerequisite for neutralizing by antibody molecules [65]

Many attempts have been made to develop vaccine immunogens 
by expressing surface loops containing continuous epitopes of 
different viruses as recombinant proteins [43] but even this fairly 
straight- forward approach did not produce any effective viral vaccine 
[41]. Compared to simple loop structure, reconstructing HIV-1 
discontinuous epitopes [68-70] and presenting them in the required 
conformation at the task and all attempts to produce effective HIV-1 
vaccine immunogens in this way have so far been successful [71,72]. 
More difficult task is to reconstruct epitopes that arise from the 
quaternary structure of viral proteins. It has been known for more 
than 40 years that such epitopes which were initially called neophytes 
[72] are present in capsid and membrane proteins and can be easily 
detectable by appropriate immunoassays [73,74]. Reconstructing 
HIV-1 neotopes by structure based design may turn out to be 
an impossible task, partly because of the unstable and transient 
conformation of Env trimmers [75] which can alternate between 
open and closed quaternary conformations [76]. It remains unclear 
whether such transient neotopes are advantageous for inducing 
neutralizing antibodies because their conformational variability is 
able to facilitate influenced fit adjustments and BCR recognition. In 
studies with other HIV-1 epitopes, there are conflicting reports on 
whether immunogenicity is enhanced by increasing or decreasing 
epitope flexibility [77-80].

The polyreactivity of germline Abs and of the initial response 
to HIV-1 Env antigens is a general property of the human immune 
system and is not a specific feature of HIV immune responses. 
Subsequent studies revealed that most anti- HIV-1 bnMabs were 
highly mutated antibodies which had undergone a prolonged 
affinity maturation process, thereby acquiring high neutralization 
potency [81]. The affinity maturation observed in HIV-1 antibodies 
was much more extensive than the 5-10% mutation frequency 
usually observed with antibodies directed to other viruses [82,83]. 
The germline- like version of all these Mabs showed little or no 
measurable binding to HIV-1 Env, indicating that the immunogens 
which initiated the affinity maturation process are unlikely to have 
the epitopes recognized by the mature bnAbs used as template in the 
RV experiments. Studies with long term non-progressors and elite 
controllers of HIV-1 infection [84] are also of little value since it is 
not possible with such individuals to exclude an innate or genetic 
predisposition to non-infection nor to predict which efforts functions 
would be mediated by an adaptive vaccine- induced immunity [85].

Fuzzing binding site creates a more common situation in 
which paratope substitutes present in an Ig molecule that is at least 

partly overlap which prevents two different antigens from binding 
simultaneously to the same Ig [86]. During one of the studies, when 
peptide libraries were tested for their ability to bind Mabs raised against 
a protein, it is usually found that many peptides that bind Ig residues 
situated outside the paratope region show little sequence similarity 
with the target antigen [42,87-89]. The ability of the immune system 
to specifically recognize a huge number of multiepitopic antigens 
is therefore not due to the existence of myriads of antibodies, each 
one recognizing a unique epitope present in only one antigen, but 
raises from the combinational effect of several polyspecific antibodies 
recognizing separate epitopes on the same antigen [90,91].

As we have pointed out before, animal studies do not represent 
HIV infection precisely, and SIVcpz viruses that cause primate 
AIDS are closely related to the HIV virus that caused AIDS in 
humans. Furthermore, no African primate naturally infected with 
SIV develops AIDS in nature, and protection against SIV in natural 
primates emerges before the development of antibodies to counter 
natural SIV [reviewed in 2 and 14]. Therefore, immunity is not 
based on classical immunity [1,6-8,28,39,47,48]. This is important 
to remember in dealing with HIV in humans. Classical immunity is 
enormously important against bacteria, some fungi, and some viruses 
but not against HIV, a retrovirus that seems to be “immune” from 
traditional vaccine approaches based on classical immunity.

Although it is possible to rationally design an epitope or antigen 
so that it will have an improved structural complementarity to one 
particular nMab, this only represents antigen design in the context of 
a single epitope-paratope pair and it should not be called immonogen 
design. When authors discuss the rational design of an HIV-1 
vaccine [92-94], they only refer to studies that improve the degree 
of complementarity in one epitope- Mab pair and they do not clarify 
how an improved antigen could actually be “designed” to become an 
immunogen capable of generating protective antibodies. So far, all 
the studies reporting the successful rational design of a viral antigen 
have failed to demonstrate that the engineered antigen is also an 
effective vaccine immunogen [91].

In the following section we describe various antigenic targets that 
are being considered for a vaccine based on classical immunity.

Do neutralizing antibodies protect african non-human 
primates?

Over 40 species on ANHP (NHPs) typically carry CD4+ 
lentiviruses, collectively categorized as SIVs. Human HIV lentiviruses 
(HIV-1 and HIV-2) are believed to have SIV genetic ancestry. These 
NHPs usually to not develop AIDS, in spite of sustained high viral 
levels. Special attention has been paid to the sooty mangabeys (SM, 
Cercocebus atys) as a natural SIV host. It has been hypothesized 
that the West African HIV-2 epidemic began as a result of the 
transmission of sooty mangabey SIVsm across species from sooty 
mangabeys to humans. Sooty mangabey SIVsm is also notable 
because it is the progenitor of SIVmac, the name for the retroviruses 
associated with the rhesus macaque, viruses that have been utilized 
in rhesus macaque model studies in the areas of both vaccination 
and pathogenesis [95,96]. Although they experience viral replication 
at elevated levels, sooty mangabeys stay healthy, maintain a 
continuously favorable CD4+T cell count, and do not develop AIDS, 
or any AIDS-like malady. This applies both to those sooty mangabeys 
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that are inoculated experimentally and to those infected naturally 
[8,28,96,97].

In the chronic infection phase, the nonpathogenic infection of 
sooty mangabeys is accompanied by low immune activation levels. 
These are achieved following transient immune activation, which takes 
place in the primary phase of infection [8,28]. These conclusions have 
encouraged the hypothesis that homeostasis of CD4+ T-cells has been 
achieved, and disease progression checked, due to the observation 
that generalized immune activation is lacking during the chronic 
phase in sooty mangabeys infected with SIV [8]. Such, however, is not 
the case. These studies primarily focused on innate immune cells, and 
T cells, although B cells are heavily involved in the immune responses 
of HIV-1-seropositive patients. The autologous, or infecting, HIV-1 
virus attacks, neutralizing antibodies are produced by B cells, which 
prompts viral escape, motivated ongoing antibody production (de 
novo) [96-100], and leads to general B-cell dysfunction [28,99]. Li, 
et al. [8] found a remarkable difference in both the infection levels 
and the immune-activation levels of humans infected with HIV-
1, and these levels for sooty mangabeys infected with SIV. They 
conducted a comparison of Nab (neutralizing antibody) reaction by 
each population to the autologous virus under consideration, and 
employed a pseudovirus assay to assess Nab response vis-à-vis both 
SIV envelope (Env) glycoproteins and the Env counterparts in HIV-1 
[8]. Antiretroviral drug therapy was not administered to any subject 
under investigation during the time of the experiment. As HIV-1 
is progressed, the development of autologous Nabs rises in the first 
months to high titers to supposedly counter the newly introduced 
viral infection [8]. Does the same pattern hold for sooty mangabey 
infection during the nonpathogenic SIV phase? Li, et al. [8] found 
Nab response, as evidenced by sooty mangabey plasma, was sharply 
lower in these primates than in humans (10% median for sooty 
mangabeys; 93% median for humans; P=0.02). An important thing 
to remember is that each monkey evaluated tested seropositive by the 
half-year mark, and each displayed high antibody levels during the 
period of testing. Therefore, the low Nab measure was due to some 
other factor than humoral immune reaction [8,97-100]. It appears 
that the minimal Nab levels are due to something inherent in sooty 
mangabeys. Future studies may find critical leads in the conquest of 
AIDS by comparing both quantitative and qualitative variation in 
sooty mangabey Nab reaction during the nonpathogenic infection 
stage with Nab response during the pathogenic stage. This also points 
towards an adverse outcome for an adaptive immunity-based vaccine. 
Increasing the level of neutralizing antibodies to HIV-gp120 may put 
vaccinated individuals at higher risk; in some vaccine trials, that is 
what occurred, and the trials were terminated immediately [3,6].

When SIV infects natural-host species, notably the sooty 
mangabeys, such infection is accompanied by elevated viral 
replication levels, and low generalized immune activation levels and 
this in spite of indications that an adaptive immune response has 
occurred. The potential for SIV-seropositive sooty mangabeys to 
produce neutralizing antibodies (Nabs) to counter autologous viral 
threats may appropriately be compared to the infection of humans 
with HIV-1, especially subtype C. In HIV-1 infection, high Nab levels 
have been observed, while samples collected at parallel points in time 
from sooty mangabeys have shown relatively depressed autologous 
Nab titers. It is interesting to note that the plasma from sooty 

mangabeys with elevated titers of Nabs also had high levels of CD4+ 
T cells, which suggests, although it seems counterintuitive, that these 
sooty mangabeys have actually received immulogical benefit, a far 
different response that that seen in HIV-1-infected humans [8]. Some 
other mechanism besides classical immune response seems to be at 
work, keeping CD4+ T cells high in spite of infection, as evidenced 
by high Nab titers. Might classical immunity to HIV or SIV actually 
have adverse effects? As demonstrated in multiple high profile clinical 
vaccine trials, in many cases supposedly immunized subjects develop 
AIDS faster, not slower, than the unimmunized or unvaccinated [29-
34]. Li et al. [8] concluded that the low autologous Nab level so typical 
of sooty mangabey infection constitutes a new and promising area 
that should be explored. It is impressive that elevated Nab titers are 
not even needed by sooty mangabeys to remain apathogenic from 
SIVsm [8].

Intractable challenges
Many costly HIV vaccine trials have sought to prompt the 

induction of neutralizing antibodies (Abs), as well as T cells that 
have an adverse effect on other cells that threaten human health 
[1,6-8,28,29-34]. These cytotoxic T cells have proven helpful in 
eliminating viruses, fungi, and foreign graft, but HIV has posed 
unusual challenges to their utility, as well as the usefulness of Abs. 
Immune response may be, and has been, induced both experimentally 
and naturally, but it has not proven sufficient to control viral spread, 
let alone a major global pandemic. Generally the candidate vaccines 
that have been used in human trials have been comprised of just an 
envelope protein, or else an envelope protein in combination with 
some other HIV protein(s). Also tested have been synthetic peptides 
with multiple epitopes. Since an antigenic determinant (epitope) 
comprises that portion of an antigen that can be recognized as 
foreign (non-self), and potentially harmful, by T cells, B cells, and 
antibodies, the use of multiple epitopes should increase the likelihood 
of inducing protective responses. They have produced responses, but 
not adequately to stop the spread of HIV. Polypeptides that have been 
expressed by viral vectors have also been tested for their potential 
HIV-fighting utility. Both the well known VaxGen and Merck trials 
failed to curtail infection risk rates. The first, which experimented 
with the recombinant glycoprotein (gp) 120 [29-34], induced a 
strong immune response. The second, which also promoted a robust 
response, focused on adenoviral gag/pol/nef vector. Both of these 
major trials raised hopes, but ultimately each was disappointing in 
outcome. The RV144 vaccine succeeded in cutting infection risk by 
31%, a marginal level but with doubtful data analyses. This vaccine 
was a blend of a canary pox vector that expresses gp120/gag/protease 
genes, and a full-length gp120 protein. The marginal level of risk 
reduction that it achieved further underscored the tenacity of the 
HIV retrovirus. While this trial, too, raised hopes, it ultimately failed 
to provide what was needed to effectively block a pandemic. Natural 
responses, like induced responses, have also proved inadequate in 
virtually all humans [29-34].

As we have stated previously, the core challenge is the remarkably 
rapid mutation rate for HIV, which leads to structural inconsistency 
among the envelope proteins of viruses [ 1,6-8,28,14,3,39,47,48,]. 
Infection in one part of the world may well be, and often is, different 
than infection in other places. On the HIV coat, the mutable regions 
happen also to be the immunodominant epitopes [2,3,14]. As a 
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result, candidate vaccines may induce T-cell or antibody responses, 
but since coat proteins vary, the test results may lack universal 
application potential. Even within the same host, as infection is 
further established, alterations occur in the viral coat structure [29-
34]. To further complicate matters, immune protection is troublingly 
transient because of the emergence of viral escape mutants. The 
variable and ever changing nature of retroviruses, such as HIV-
1, make for often promising, yet perennially frustrating research, 
investigations akin to conducting an experiment with inputs that 
change, even as the experiment is being carried out. Obviously, a 
desired output can hardly be universally stable when the inputs 
vary. Such is the world of HIV-SIV research. It is generally, reasoned 
that it is the constant modulations in Env proteins that prevents the 
development of an effective anti-HIV immunity. But, as explained 
earlier, when nonhuman primates in the wild are exposed to SIVs, 
despite the viral loads they carry, and the multiplications that 
modulate their Env proteins, they do not develop AIDS [28,8,95,96]. 
We will discuss this further in more details.

The Macaca mulatta, better known as the Rhesus macaque (RM), 
is among the most diligently analyzed Old World species of monkey. 
When DNA sequencing was finally completed in 2007 for the whole 
genome of the Rhesus macaque, the results revealed that the RM 
shares approximately 93% of its nucleotide sequence with human 
beings [95,96]. Consequently, RMs has been an excellent species to 
use in medical experimentation in such areas as xenotransplantation, 
behavioral science, neurology, drug testing, cognitive science, and 
genetics. Moreover, the similar patterns of susceptibility to viruses, 
bacteria, and parasites, that are seen in both humans and RMs make 
the latter important for improving the health of the former. The HIV-
1 lentivirus, relatively deadly among humans, is genetically related 
to SIV, which causes RMs to progress to AIDS. This knowledge has 
inspired researchers to develop reagents to employ in investigations 
of the adaptive and innate immunological responses of RMs at the 
cellular level. Particular emphasis in RM research is on memory cells 
as they relate to the various immunological compartments in RMs. 
Areas of interest included how the cells are distributed, how they 
may be manipulated, and how they function, both in infected and 
uninfected RMs [96].

Examples of long-term nonprogressors [LTNPs], elite 
suppressors [ES] epidemiological evidence

 Those exposed to HIV-1 generally become infected; generally, 
risk of infection is directly proportional to number of exposures. 
Rare individuals, however, remain uninfected despite multiple 
high-risk sexual exposures [36]. Approximately 1% of humans 
have a homozygous defect in the HIV-1 coreceptor CCKR5, which 
provides resistance to monocyte-tropic HIV-1 [37]. But why do so 
many HIV-1 exposed healthcare workers escape infection? Over 
2,084 US healthcare workers were accidentally exposed to HIV-1 and 
monitored by the CDC, and unreported cases may be 50-100 times 
higher, since most of those accidentally exposed to bodily fluids of 
HIV-1-seropositive individuals choose not to inform the CDC. 
Yet only four, with no other exposure source, became seropositive 
[38], which seems remarkable considering that many received deep 
percutaneous exposures, and visible bleeding from needle injury sites. 
More extensive studies of HIV-1 risk after percutaneous exposure to 
infected blood estimate an infection rate of ~0.3% (implying that 

99.7% have some type of immunity) [46]. We argue that exposures to 
low doses of HIV-1 in human population may be more common than 
we have perceived, and hence the number of individuals exposed to 
HIV-1 via sexual activity, breast milk, or oral activity may be much 
larger than typically supposed [6,38,46-49]. Small amounts of HIV-
1 have been reported in human vaginal fluids, breast milk, and 
saliva, but one rarely gets infected with HIV via these routes [6]. The 
question is why?

Exposed-but-resistant: Kenyan sex workers appear 
immune to HIV infection

There have been numerous explanations that why certain 
individuals control HIV without treatment or even group of people, 
like the Kenyan sex workers remain seronegative after repeated 
exposure to HIV retroviruses from different clad and species [97-99]. 
Therefore, the argument has been made that that the main reason 
one is unable to control HIV is because of the development of, or 
exposure to, various “quasispecies.” Plumber et al. [99] identified 
“a clustering of resistance” along family lines: mothers, daughters, 
aunts and nieces demonstrated a common HIV resistance [97-99]. 
Still, explanatory data have been inconclusive. Elite suppressors are 
untreated HIV-1-infected patients who maintain viral loads of <50 
copies/ml. Prior studies suggested that these patients, as well as long-
term non-progressors (patients who are infected with HIV-1, and 
have not developed AIDS for > 10 years), are infected with defective 
HIV-1 variants [100]. Other reports have shown that the HLA-B*27 
and -B*57 alleles are overrepresented in these patients, suggesting that 
host factors play a role in the control of viral replication [101,102]. 
Bailey et al. [100] studied differences in viral isolates and immune 
responses of an HIV-1 transmission pair. While both patients were 
HLA-B*57 positive, the transmitter progressed to AIDS, whereas the 
recipient, who was also HLA-B*27 positive and an elite suppressor, 
did not. Isolates from both patients were replication competent. 
Escape mutations in HLA-B*57-restricted epitopes were present in 
both patients, which suggests that these mutations by themselves do 
not explain the difference in outcomes seen in these patients, and that 
the specific HLA types may not be so important after all. It should be 
realized that the real protection may be miRNA-based, and that host 
and viral factors may play only secondary roles.

This raises fundamental questions that, if answered, could 
refocus the global anti-AIDS quest. To the common question, “Why 
are SIV-strains non-pathogenic for one primate species, yet lethally 
pathogenic for others?” we add, “How can humans develop a similar 
type of immunity?” Answers to these questions, we maintain, will 
be made only as researchers think outside the traditional classical 
immunity box, and welcome a paradigm shifting, intracellular 
miRNA immunity approach that has been in operation since time 
immemorial, during the genesis of retroelement and transposon 
activity [1,6-8,28, 10-14,2-5,16-21,24, 39, 44,47,48,102-104]. We 
applaud the extensive data collection that has been done, along 
with valuable interpretations, but urge that investigators utilize past 
contributions as building blocks for a new conceptual edifice, not 
as self-reinforcing stumbling blocks in a unsustainable theoretical 
structure. 

In summary, as the third decade of the new century has begun, 
we must admit that the large scale, well-publicized clinical trials 
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for a classical immunity-based HIV-1 vaccine have all failed [29-
34]. Moreover, many experimental studies utilizing simian models 
of AIDS have either failed outright or proven inconclusive. In this 
review we show why reliance on classical immunity for the vaccine 
will be an exercise in futility, and why such expensive diversions of 
time and money should be abandoned. Classical immunity is not the 
protective mechanism against retroviruses and lentiviruses [6,8,28], 
including HIV-1; retroviruses are genetic parasites and intracellular 
invaders of host cell genomes. It is now clear that ANHP already 
exhibit resistance against HIV-1-like lentiviruses (i.e., SIVs), and 
that they have evolved the capacity to protect their genetic integrity 
through intracellular nucleic acid-based defense mechanisms. We 
maintain that these defenses are based on double-stranded (ds) 
RNAs, miRNAs or other non-coding dsRNAs (ncRNAs). We urge 
that future efforts be concentrated on understanding this “molecular 
defense” in order to stop AIDS [6,7,39,47,48]. In this article, we have 
provided scientific evidence that dsRNA-based immunity is the basis 
of the observed resistance in ANHP [4,6,8, 96-97], human long-term 
non-progressors, elite suppressors and outright HIV resistant sex 
workers [6,7,3 25, 36-39,47,48,95-101]. The actual defenses against 
HIV-1 and SIVs in non-human primates are due to homologous 
miRNAs that disable these lentiviruses [6,7,13,1,44,101-105].
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