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Abstract

Ischemia/reperfusion (I/R) injury still remains a major challenge in standard 
medical treatments of ischemic heart disease, i.e., thrombolytic therapy and 
primary percutaneous coronary intervention as well as in open heart surgery. 
Development of cardio protective strategies against I/R injury is of great 
clinical importance. Vascular endothelial dysfunction plays a significant role 
in myocardial I/R injury, which makes endothelium an attractive target for 
postischemic myocardial protection. Recent advances in understanding the 
molecular mechanisms underlying endothelial I/R injury laid the foundation for 
future development of novel strategies targeting endothelium for prevention 
and/or treatment of myocardial I/R injury. This review summarized the 
pathophysiological mechanisms of endothelial I/R injury and discussed the 
significance and potential of endothelium targeting strategies in postischemic 
myocardial protection. 
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factors for ischemic heart disease such as smoking, hypertension, 
obesity, and diabetes [5]. Myocardial ischemia is inevitable in 
cardiac surgery requiring cardiopulmonary bypass. The no- or low-
reflow phenomenon after myocardial ischemia/reperfusion (I/R) 
resulting from endothelial edema, neutrophil and platelet plugging, 
microthrombosis, and enhanced vasomotor may lead to inadequate 
coronary perfusion that further compromises cardiac function [6]. 

Pathophysiological mechanisms of endothelial 
dysfunction in myocardial I/R

I/R induces vascular endothelial dysfunction through multiple 
mechanisms including cytotoxicity caused by pH change, oxidative 
stress resulting from overproduction of Reactive Oxygen Species 
(ROS), and Endothelial Nitric Oxide Synthase (eNOS)-Nitric Oxide 
(NO) inhibition, etc. [7,8]. Studies in recent years provided new 
insights into the molecular mechanisms of endothelial I/R injury 
such as modulation of ion channels and gap junction proteins. The 
role of acidosis-induced cytotoxicity in ischemic endothelial damage 
was evidenced by ischemic acidosis-induced activation of caspases, 
i.e., caspase-12 and caspase-3, in endothelial cells of coronary arteries 
[9]. By up regulation of the anti apoptotic protein Bcl-xL, acidic 
preconditioning protects coronary endothelial cells from ischemic 
apoptosis [10]. In addition, extracellular acidosis strongly suppresses 
Ca2+ entry into endothelial cells thereby inhibiting the production 
of vasoactive substances, which may also be involved in I/R-induced 
endothelial dysfunction [11]. ROS is abundantly generated by 
cardiomyocytes, coronary vascular endothelium, and inflammatory 
cells during I/R through incomplete reduction of O2 in which 
xanthine oxidase, NADPH oxidase, NO synthase (unconjugated), 
cyclooxygenase, and lipoxygenase may all be involved [8]. Activation 
of endothelial cell by oxidative stress promotes intravascular 
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Introduction
The vascular endothelium is a single layer of cells that lines the 

entire circulatory system. By counteracting leukocyte adhesion and 
platelet aggregation to prevent inflammation and thrombosis and 
actively regulating vascular tone with the production of vasoactive 
substances, endothelial cells play a key role in maintaining vascular 
health. Disturbance of functional integrity of endothelium, known as 
“endothelial dysfunction”, represents a complex pathophysiological 
entity including inflammatory activation and perturbation of 
anticoagulatory properties as well as abnormal vasomotion [1]. 
Endothelial dysfunction significantly contributes to the pathogenesis 
of a variety of cardiovascular disorders including myocardial 
ischemia [2]. Ischemic heart disease is the most common cause of 
myocardial ischemia. Previous studies have demonstrated the pivotal 
role of endothelial dysfunction in the initiation and progression of 
this disease [3,4]. Moreover, strong associations have been reported 
between endothelial dysfunction and a number of well-defined risk 
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microthrombosis, reduction of blood flow and activation of 
inflammatory cells. Expressions of E-selectin, P-selectin, and 
intercellular adhesion molecules (ICAMs) on the surface of activated 
endothelial cells promote the recruitment of neutrophils, the principal 
effector cells of inflammation during I/R [12]. Nuclear factor kappa-B 
(NF-κB) plays a key role in I/R-induced endothelial cell activation. 
Tyrosine phosphorylation of IκBκ induced by oxidative stress results 
in the dissociation of this inhibitory protein from NF-κB, leading 
to the nuclear translocation of NF-κB and subsequent activation 
of transcription of proinflammatory, procoagulant, and vasoactive 
genes expressed in endothelial cells, which consequently initiates 
and propagates myocardial I/R injury [13]. In addition to be a target 
of ROS, endothelial cells are also an important source of ROS. ROS 
generated by endothelial cells through xanthine oxidase, NADH/
NADPH oxidase, and uncoupled eNOS significantly contributes 
to vascular dysfunction after I/R that involves acceleration of NO 
inactivation [14]. 

Endothelial permeability increases following myocardial I/R. The 
loss of barrier function of endothelial cells can be attributed to ROS 
released from activated leukocytes that cause changes in endothelial 
cytoskeletal structures and promote the formation of intercellular 
gap [15]. Activation of endothelial contractile machinery due to cell 
re-energization as well contributes to endothelial barrier failure [16]. 
Endothelial barrier dysfunction consequently promotes migration 
of neutrophils and other inflammatory cells into the injured 
myocardial tissue and further potentiates I/R injury. Moreover, I/R 
disrupts the balance between endothelium-derived constricting and 
relaxing factors thus interrupts blood flow and organ perfusion. I/R 
increases the production of vasoconstrictors such as endothelin-1 
[17]. A considerable body of evidence suggests the significance of 
reduction of endothelium-derived relaxing factors, in particular, 
NO and Endothelium-Derived Hyperpolarizing Factor (EDHF) in 
the disturbance of blood flow in myocardial ischemia and related 
conditions [18-23]. 

In addition to its potent vasodilatory effect, NO inhibits platelet 
aggregation and leukocyte adhesion as well as vascular smooth muscle 
proliferation to act as an important component of the endogenous 
defense mechanism against vascular injury, inflammation, and 
thrombosis. The decrease of NO bioavailability is a well known 
consequence of myocardial I/R. Multiple mechanisms including 
eNOS inhibition [24,25], arginase activation [26,27], and increased 
production of ROS [28] are involved in I/R-induced NO loss 
through reduction of production and/or acceleration of inactivation. 
Inhibition of store-operated Ca2+ entry by acidosis results in 
decreased production of NO, which may also contribute to endothelial 
dysfunction during ischemic assault [11]. In fact, in an in vitro I/R 
model, measurement of NO by using a NO micro sensor provided 
a direct evidence of the decrease of NO in coronary arteries after 
hypoxia/reoxygenation (H/R) exposure [29]. Uncoupling of eNOS is 
another mechanism by which myocardial I/R compromises eNOS-
NO function. In stead of producing NO, uncoupled eNOS becomes 
a source of ROS generation [30]. This functional switch of eNOS 
occurs when substrate L-arginine or cofactor tetrahydrobiopterin 
(BH4) is insufficient, which in myocardial I/R can result from 
arginase activation that increases the consumption of L-arginine, 
and ROS production (particularly peroxynitrite ONOO-) that leads 
to oxidization and degradation of BH4 [31]. Reduction of NO and 

production of O2.- worsen endothelial I/R injury. Moreover, NO and 
O2.- can affect primary contractility of actin-myosin fibers within 
myocytes, putatively via effects on Ca2+ storage in the sarcoplasmic 
reticulum. Diminished myofiber contraction resulting from NO 
inhibition and O2.- overproduction significantly affects cardiac 
output [32]. Contribution of EDHF in vasodilatation increases as 
vessel size decreases [33,34], which highlights the significance of 
EDHF in blood flow regulation. Opening of intermediate and small 
conductance Ca2+-activated K+ channels (IKCa and SKCa) on the 
plasma membrane of endothelial cells underlies the classical EDHF 
pathway [35]. IKCa and SKCa opening induces endothelial membrane 
hyperpolarization that can be conducted along the endothelium 
via homocellular endothelial gap junctions and transmitted to 
smooth muscle cells through myoendothelial gap junctions to cause 
vasodilatation. IKCa and SKCa activation may also induce K+ efflux 
from endothelial cells to elicit hyperpolarization and relaxation of 
adjacent smooth muscle cells by activating inwardly rectifying K+ 
(Kir) channels and Na+-K+-ATPase on the smooth muscle membrane 
[36]. In some vasculature including coronary arteries, non-classical 
EDHF response mediated by epoxyeicosatrienoic acids (EETs) may 
also exist. EETs not only activate endothelial IKCa and SKCa but also 
open myocyte large-conductance KCa (BKCa) to relax vessels [37]. 
Investigations in the past decade revealed the impact of I/R on EDHF-
mediated endothelial function. Although potentiation of the EDHF-
type response was reported in animal models of myocardial I/R and 
cerebral I/R [38,39], which supports the “compensatory or backup” 
theory of EDHF-mechanism in conditions involving NO loss, 
contradictory evidence is also available that shows the impairment 
of EDHF-mediated function under I/R conditions. For example, 
in porcine coronary arteries exposed to H/R, the EDHF-mediated 
relaxation was significantly attenuated [22,40,41]. H/R also blunted 
the EDHF-response in coronary microveins [23]. Further membrane 
potential measurement showed a decrease of hyperpolarization 
mediated by EDHF in smooth muscle cells of coronary vasculature 
[42]. 

Furthermore, we recently demonstrated that H/R inhibits IKCa 
and SKCa currents in coronary endothelial cells and the inhibition of 
IKCa and SKCa activity underlies the impairment of EDHF responses 
caused by H/R [42]. 

Significance/Potential of endothelial protective strategies 
in myocardial I/R injury

To date, I/R injury still remains a major challenge in standard 
medical treatments of ischemic heart disease, i.e., thrombolytic 
therapy and primary percutaneous coronary intervention [43], and 
in open heart surgery. Myocardial I/R induces coronary endothelial 
dysfunction that in turn promotes myocardial injury. Exaggerated 
inflammatory reactions following endothelial cell activation are 
closely associated with oxidative stress during myocardial ischemic 
assault, which rationalizes the traditional anti-inflammatory and 
antioxidant strategies for endothelial and myocardial protection. 
Postischemic cardiac performance may benefit from well-preserved 
coronary blood flow by strategies protecting endothelial dilatory 
function, i.e., NO and EDHF pathways. New approaches targeting 
cellular mechanisms underlying these endothelium-derived relaxing 
factors have the potential to become new treatments for myocardial 
ischemia. 
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Anti-inflammation and antioxidant strategies for 
cardioprotection

Cardioprotection conferred by interventions targeting 
neutrophil influx, such as neutralization of P-selectin or depletion of 
neutrophil has been reported in ischemic myocardial injury [44,45]. 
Administration of monoclonal antibody against leukocyte adhesion 
molecule CD18 (ligand for ICAM-1) protects coronary endothelium 
and myocardium in neonatal lamb hearts following cardioplegic 
arrest, evidenced by preserved coronary blood flow and better 
recovery of left ventricular developed pressure [46]. Inflammatory 
reactions resulting from endothelial cell activation can be suppressed 
by NF-κB inhibition. Transfection of NF-κB decoy oligonucleotides 
into isolated rat heart blocked ICAM-1 up regulation and inhibited 
neutrophil adhesion to small coronary venules [47]. The dramatic 
increase of NF-κB in patients undergoing heart surgery with 
cardioplegic intervention [48] added clinical evidence supporting the 
potential of NF-κB inhibition in postischemic myocardial protection. 

It has to be mentioned that although cardioprotective effect of 
anti-inflammatory strategies has been shown in a number of animal 
experimental studies, clinical trials aiming to inhibit inflammation 
however yielded unsatisfactory results, suggesting that inflammation 
is not solely an injurious process, but also mediates processes essential 
for proper tissue healing. Therefore, balancing the inflammatory 
forces between damage and repair needs to be emphasized in future 
development of anti-inflammatory strategies, such as strategy 
targeting endothelial cell activation, for cardioprotection against I/R 
injury. Endothelium-dependent vasodilator responses of coronary 
arteries were better preserved after cardiac arrest using cardioplegic 
solution containing inhibitors of hydroxyl radical synthesis, i.e., 
deferoxamine or manganese superoxide dismutase [49]. Inclusion 
of organic antioxidants such as ascorbate and deferoxamine in St 
Thomas’ Hospital cardioplegic solution improved the recovery of 
aortic flow in rat heart after global ischemic arrest [50]. The protective 
effect of antioxidants on endothelium involves the inhibition of ROS-
induced endothelial cell activation and NO inactivation [51,52]. As 
the role of enzyme sources of endothelium-derived ROS become clear, 
it is possible to develop more specific therapies targeting endothelial 
redox mechanisms for myocardial protection. 

Significance of targeting eNOS-NO mechanism in 
cardioprotection 

The significance of NO in inhibiting neutrophil accumulation, 
inactivating superoxide radicals, and improving coronary blood 
flow establishes the role of this intracellular signaling molecule in 
myocardial protection. Moreover, NO was found to mediate the 
cardioprotective effect of a number of clinically used strategies such 
as preconditioning and postconditioning [53], which further supports 
the concept of targeting eNOS-NO mechanism for myocardial 
protection under I/R conditions. 

Early attempts to enhance NO function include application 
of NO precursor L-arginine or NO donors such as nitroglycerin. 
Administration of these agents or supplementation in cardioplegia 
preserves postischemic endothelial function in both animals and 
humans and improves postischemic ventricular performance [54-
58]. In fact, the use of NO-donor drugs is considered an effective 
replacement therapy in “NO-deficient” disorders. However, the 

reduced responsiveness to nitrovasodilators, caused by nitrate 
resistance and nitrate tolerance, yet remains a problem to be solved. 
Strategies targeting mechanisms by which I/R inhibits NO function 
were further developed, including inhibition of arginase activation 
[27], restoration of eNOS down-regulation [25], and modulation of 
eNOS uncoupling [59]. Use of arginase inhibitor restored the NO-
mediated function in I/R vessels [27]. Addition of eNOS-transcription 
enhancer AVE3085 in St. Thomas’ Hospital cardioplegia was 
observed to restore NO production suppressed by H/R and protect 
coronary dilator responses [25]. Experimental studies in cultured 
bovine aortic endothelial cells demonstrated that exogenous BH4 
supplementation during oxidative assault prevents eNOS uncoupling 
and increases NO production [31]. Further, in a co-culture system 
of cardiomyocytes and endothelial cells, increasing BH4 content in 
endothelial cells by either pharmacological or genetic approaches 
was able to reduce the susceptibility of cardiomyocytes to H/R injury 
[60]. Recent studies demonstrated that human eNOS gene is subject 
to alternative splicing and the expression of splice variants, i.e., 
eNOS13A, produce truncated proteins lacking the reductase domain 
with no eNOS activity. Moreover, eNOS13A forms heterodimers with 
full-length eNOS and such heterodimerization significantly reduces 
eNOS activity [61,62]. These findings suggested that regulation of 
eNOS activity via modulation of the expression of eNOS isoforms 
could be of potential therapeutic interest in cardiovascular disorders 
including myocardial I/R injury in which endothelial dysfunction 
plays a role in the pathogenesis. 

Cardioprotective potential of EDHF preservation 
Preservation of EDHF component can be achieved by several 

approaches that have been proven effective in experimental studies. 
Addition of EET11,12, a possible chemical analogue of EDHF to 
cardioplegic solutions protects endothelial function of coronary 
arteries with restoration of EDHF-mediated responses [63,64], which 
can be explained by the direct “EDHF mimetic” effect of EET11,12. 
Interestingly, a recent study in an in vivo rat model of infarction 
demonstrated that administration of EETs prior to ischemia activates 
eNOS and increases NO production [65], which provided a new 
insight into cardioprotective mechanisms of EETs [66]. In addition 
to exogenous administration of EET analogs, approaches aiming to 
increase the endogenous concentration of EETs also show therapeutic 
potential in myocardial ischemia that include inhibition of soluble 
epoxide hydrolase (sEH) [67] to suppress EETs metabolism and of 
cytochrome P450 epoxygenases to increase EETs production [68]. 

Cardioprotective potential of targeting gap junctions 
Gap junctions formed by connexins (Cx) play an important 

role in cell¬-cell communication and homeostasis in various 
tissues including vasculature, which enable a direct passage of ions, 
metabolites, or electrical signals from one cell to another. Electrical 
coupling along the endothelium and between endothelium and 
smooth muscle is central in arteriolar conducted response and control 
of vascular resistance. The vascular gap junctions are assembled from 
one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. 
Cx40 and Cx43 are expressed in both endothelial and smooth muscle 
cells while Cx37 is typically confined to endothelium and Cx45 
locates at smooth muscle [69]. Endothelial expression of Cx40 is 
influenced by various factors such as oxidative stress, pro-thrombotic 
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molecules, pro-inflammatory cytokines, and classical cardiovascular 
risk factors [70,71]. A recent study in a clinically relevant setting of 
I/R injury showed that the expression of Cx40 disappears from the 
endothelium in the infarct zone and in mice with endothelial-specific 
deletion of Cx40, infarct size increases after I/R. The cardioprotective 
effect of endothelial Cx40 in cardiac I/R injury was suggested to 
be associated with a decrease in neutrophil infiltration through 
ecto-5′-nucleotidase/CD73-dependent regulation of Vascular 
Cell Adhesion Molecule-1 (VCAM-1) expression at the surface 
of endothelial cells [72-74]. Consistently, in a hind limb ischemic 
model, Cx40 deficient animals exhibited profound and rapid failure 
of ischemic limb survival [75]. Studies in a monolayer of cultured 
microvascular endothelial cells showed that hypoxia followed by 
abrupt reoxygenation reduces interendothelial electrical coupling 
via oxidant- and PKA-dependent signaling that targets Cx40, which 
provided a mechanistic explanation for the compromised arteriolar 
function following H/R [76]. Considering that eNOS and Cx40 can 
exist in a complex and endothelial Cx40 expression is essential for 
proper expression and function of eNOS [77,78], I/R / H/R-induced 
Cx40 modulations are therefore expected to result in functional 
changes of eNOS-NO pathway. Direct electrical communication 
between endothelial and smooth muscle cells via myoendothelial gap 
junctions plays an essential role in EDHF signaling, which further 
reveals the relevance of connexin proteins to the endothelial control 
of vascular tone. Blockade of myoendothelial gap junctions with 
mimetic peptides specifically against Cx37, Cx40 and Cx43 has been 
observed to prevent endothelium-dependent subintimal smooth 
muscle hyperpolarization [79,80]. Rapid endothelial cell-selective 
loading of Cx40 antibody also blocked EDHF-type signaling [81]. 
Given the important role of gap junctions in conducting vasodilator 
responses, manipulation of connexin function and/or expression may 
represent a potential approach for tackling endothelial dysfunction. 
The improvement of vasorelaxation in response to preconditioning 
was demonstrated to be associated with increases of Cx40 and Cx43, 
as well as a more efficient gap junction coupling in endothelial 
cells [82]. However, successful translation of these basic scientific 
discoveries into clinical application will require further studies and 
future developments of selective pharmacological tools that allow 
targeting gap junctions in a connexin-isoform and cell type-specific 
manner.

Cardioprotective potential of targeting endothelial ion 
channels 

Endothelial ion channels, in particular, Ca2+-permeable 
channels, i.e, Transient Receptor Potential (TRP) channels [83], 
and K+ channels, i.e, IKCa and SKCa, emerge as promising 
therapeutic targets for endothelial I/R injury. An increase of [Ca2+] 
i in endothelial cells is required for the activation of NO generating 
enzyme eNOS [84]. Opening of IKCa and SKCa or/and production 
of EETs that underlie the EDHF action also depend on endothelial 
[Ca2+]i rise [35,85]. On the other hand, membrane hyperpolarization 
of endothelial cells resulting from IKCa and SKCa opening in turn 
enhances driving force for Ca2+ entry, promoting Ca2+ influx and 
NO production [86]. These lines of evidence suggest the significance 
of Ca2+-permeable and K+ channels and the functional interplay 
between these two distinct types of channels in the modulation of 
endothelial function. 

IKCa/SKCa and TRP channels were found to be affected by I/R and 
hyperkalemic exposure, which provided scientific basis for targeting 
these channels during cardiac surgery for endothelial protection. 
In coronary arteries exposed to H/R, pharmacological activation 
of IKCa and SKCa channels improves EDHF-responses including 
relaxation and hyperpolarization [42]. The potential of IKCa/SKCa 
activators in the treatment of cardiovascular disorders through the 
improvement of endothelium-derived hyperpolarizations and NO-
mediated function was discussed in depth in recent review articles 
[87,88]. 

I-R/H-R affects TRP channels, i.e, TRPC3 and TRPV4, and 
associated vascular endothelial function. Through inhibiting 
membrane translocation of the channel, H/R suppresses TRPC3 
channel activity and Ca2+ influx via TRPC3 in coronary endothelial 
cells, resulting in reduction of NO production. Activation of TRPC3 
channels restores NO production in coronary arteries subjected to 
H/R [29]. Most recently, we demonstrated that supplementation of 
the TRPC3 channel activator in hyperkalemic cardioplegia such as St 
Thomas’ Hospital and Histidine-Tryptophan-Ketoglutarate solutions 
preserves TRPC3-mediated Ca2+ influx in endothelial cells and 
improves EDHF-mediated relaxation of coronary arteries [89]. In a 
mice model of prolonged hypoxia and reoxygenation, amplification 
of EDHF-mediated relaxation induced by preconditioning is 
associated with an increase of TRPV4 expression in endothelial 
cells. Preconditioning also increases eNOS phosphorylation to 
provide cardioprotection through a TRPV4-dependent mechanism 
[82]. These findings laid the foundation for future development 
of endothelial TRP channel-targeting strategies for postischemic 
myocardial protection. 

Cardioprotective potential of cell-based therapy 
It was reported that endothelial function in humans is associated 

with the number of circulating endothelial progenitor cells (EPCs) 
[90]. Increases in number of EPCs and NO production mediate the 
endothelial protection conferred by ischemic preconditioning in 
humans [91]. Intracoronary delivery of progenitor cells in patients 
with chronically occluded coronary arteries led to improvement in 
coronary flow reserve and cardiac function at 3-months post transplant 
[92]. A recent study showed that the EPC-driven postischemic 
myocardial protection is partially mediated by activation of the 
VEGF-PI3K/Akt-eNOS pathway [93]. MacArthur and colleagues 
recently developed a hydrogel delivery system enabling the sustained 
release of a bioactive EPC chemokine, which induces continuous 
homing of EPCs and effectively improves left ventricular function in 
a rat model of myocardial infarction [94]. However, one must admit 
that knowledge of progenitor cells still remains inadequate and more 
preclinical and clinical studies are needed. 

Conclusion
In summary, the significance of vascular endothelial dysfunction 

in myocardial I/R injury makes endothelium an attractive therapeutic 
target for postischemic myocardial protection. Development of 
approaches controlling endothelial cell activation and more specific 
interventions targeting endothelial redox mechanisms will help 
alleviate myocardial injury following I/R. Endothelial progenitor 
cells represent an emerging cell-based strategy for promoting 
vascular repair and restoring microvascular perfusion of ischemic 
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myocardium. Moreover, new insights into molecular mechanisms 
of endothelial dysfunction in relation to NO and EDHF during I/R 
and cardioplegic intervention, such as connexin proteins and ion 
channels, may lead to novel therapeutic strategies with the potential 
to improve prognosis of myocardial ischemia. The great hope of 
these endothelium targeting strategies for postischemic myocardial 
protection remains to be realized with further preclinical and clinical 
research.
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