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needs a synchronous glucose supply. Glucose fuels lipogenesis 
by providing ATP and cofactors such as NADPH needed for fatty 
acid elongation [16]. Thus, even the high production rate of acetate, 
if accompanied by adequate supply of other nutrients, May not 
necessarily down-regulate feed intake. The framework of Illius and 
Jessop [16] presumes that nutrient imbalances constrain feed intake 
via accumulation of excess metabolites such as acetate. Therefore, the 
animal targets a level of intake that minimizes nutrient imbalances. 
According to this framework, in the absence of adequate glucose, 
acetate will mount up and act as a hypophagic feedback.

β-hydroxybutyrate (BHBA) is another metabolite that can 
contribute to feed intake regulation. Subcutaneous administration 
of BHBA reduces feed intake in rats [17,18]. The satiety signals may 
arise partly from direct oxidation of BHBA. Consequently, reducing 
equivalents or NADH accumulate in the mitochondria and depress 
feed intake [19]. Unlike BHBA, subcutaneous administration of 
acetoacetate does not affect feed intake [17]. It seems, therefore, that 
the process of hepatic BHBA conversion to acetoacetate involving 
other metabolites and co-factors and not acetoacetate per se 
influences satiety. The role of BHBA on feed intake regulation needs 
further research in ruminants.

Mayer [20] was the first to suggest that blood glucose controls 
feed intake. Mayer [20] indicated that the hypothalamus takes up 
glucose and thereby monitors and controls peripheral blood glucose. 
According to the Mayer’s glucostatic theory, the hypothalamus 
controls blood glucose by controlling feed intake. Early trials with 
intra-ruminal, intra-venous, or intra-cerebroventricular glucose 
infusion in sheep [21], goats [22,23] and cattle [24] demonstrated 
no effects of glucose on feed intake. Blood glucose and its diurnal 
fluctuations are considerably lower in ruminants than in non-
ruminants [25]. Thus, blood glucose does not seem to be as significant 
in controlling feed intake in ruminants as it is in non-ruminants. This 
is not surprising, because due to the extensive rumen fermentation of 
dietary carbohydrates, VFA and not glucose are the main digestion 
end-products absorbed across the gut in ruminants [26]. When high-
starch diets containing corn and sorghum grains are fed, however, the 

Objective and Physical Constraints
The objective of this review article was to elucidate the main 

physical and metabolic constraints on feed intake in ruminants. Over 
the last 25 years, several major physical and metabolic regulators of 
feed intake in ruminants have been emphasized. Ruminal fill [1-4] 
is one of the central regulators of Dry Matter Intake (DMI) under 
certain circumstances such as when feeds with low digestibility are 
fed [5]. The dietary NDF, especially from forage, is a key contributor 
to reticulorumen fill. The greater NDF lowers the clearance rate of the 
rumen contents [6]. Hence, the dietary NDF can be a key controller 
of feed intake in early and peak lactation cows that have not peaked 
in DMI or with limited rumen fiber pool [2]. The NDF digestibility 
can significantly impact DMI [7]. As NDF digestibility increases, the 
depressing effect of NDF on DMI weakens. Allen [2] stated that DMI 
rose by 0.17kg per unit rise in in vitro or in situ NDF digestibility. 
At higher NDF digestibility, the NDF will have a smaller impact on 
rumen distension. Thus, factors affecting NDF digestibility will affect 
DMI.

Metabolic Constraints
Among the important metabolic constraints of appetite are rumen 

concentrations of volatile fatty acids [8,9]. Propionate injection into 
the portal vein has reduced feed intake in sheep [10,11]. Propionate 
rather than acetate seems to cause hypophagia [2]. Insulin secretion 
[12] and hepatic receptors [10] have been proposed to mediate 
the hypophagic effects of propionate. In addition to the hepatic 
chemoreceptors, hepatic thermoreceptors may also control feed 
intake. Di Bella et al. [13] heated the rat liver artificially and observed 
an increased chewing activity with reduced feed intake.

Feed intake is ultimately a psychological phenomenon integrating 
animal’s abilities to cope with changes in diet composition and 
metabolic demands [14]. Thus, one must consider that the rumen or 
blood VFA is only one of many factors involved in feed intake [15]. 
Illius and Jessop [16] suggested that imbalances in nutrient supply 
both in the rumen, postrumen, and hepatic levels can reduce feed 
intake. They proposed that maximizing acetate use for lipogenesis 
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Abstract

Feed intake control in ruminants is mediated through physical and metabolic 
constraints. Rumen fill, dietary fiber concentration, and fiber digestibility are 
important physical constraints. Rumen Volatile Fatty Acids (VFA) concentrations, 
post-rumen nutrient assimilation and absorption, and hepatic and systemic 
nutrient balance (and imbalance) are important metabolic constraints on feed 
intake. Blood levels of glucose and some ketones and fatty acids are other 
significant players in feed intake regulation in ruminants. Research is needed 
to elucidate how to optimize feeding strategies and feeding systems to improve 
feed intake in high-producing ruminants.
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amount of intact or partially hydrolyzed starch escaping the rumen 
may increase [27]. The intestinal starch and the resulting glucose 
may affect feed intake. The role of the absorbed glucose across small 
intestine on feed intake regulation requires has not been elucidated.

Implications
Physical and metabolic constraints on feed intake in ruminants 

were reviewed. Optimal feeding strategies and feeding systems must 
be adopted to regulate feed intake such that rumen and intermediary 
metabolism can be optimized. Research is needed to elucidate how 
to optimize feeding strategies and feeding systems to improve feed 
intake in high-producing ruminants.
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