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Abstract

Whilst our understanding of prion pathogenesis has increased markedly 
over the last 30 years, the role host defense mechanisms play is yet to be 
fully shown. We investigated whether innate immunity involving key molecules 
such as toll-like receptors and related signaling molecules afforded protection 
during prion infection. Interestingly, we discovered over expression of Interferon 
Regulatory Factor-3 (IRF-3) was inhibitory to PrPSc replication in both pre- and 
post-infected cells. However, IRF-3-gene expression was reduced by chronic 
prion infection and the suppression of octamer-binding transcription factor-1 
(Oct-1) expression. Oct-1 is known to positively regulate IRF-3 promoter activity. 
These results suggest that the innate immune signaling pathway through IRF-
3 may play a crucial role in host defense against prion infection. Although 
the mechanism(s) underlying IRF-3-mediated anti-prion activity are yet to be 
clarified, it is conceivable that interferons and interferon-stimulated genes 
located downstream of IRF-3 might be involved in such prion-specific host 
defense mechanisms. Prions, unlike viruses, have the unique property of being 
composed entirely of host-encoded protein, which would assist the pathogen in 
evading host cell-immune responses directed at their destruction and expulsion 
from the host.
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system immediately responds with lymphocytes (macrophages, 
natural killer cells and neutrophils), which attack and expunge 
pathogens from the host. Pathogens that evade the initial host defense 
response encounter the adaptive immune response [2]. It has long 
been thought that prion infection fails to elicit host adaptive immune 
responses [3] because of self-tolerance brought about by the identical 
sequence shared between PrPSc and host PrPC. Indeed, PrP-specific 
antibody production [4] and lymphocytic ability [5] remained 
unaltered in prion-infected animals, whereas subtle changes in the 
immune response (e.g., follicular dendritic cells) were observed in 
mice spleens following prion inoculation [6]. However, a protective 
role for Toll-Like Receptor (TLR) 4 signaling against prion infection 
has been proposed under certain experimental conditions [7,8]. It is 
therefore important to establish whether prions can trigger TLRs in a 
manner similar to other viral or bacterial pathogens.

Innate immune responses and strain interference 
observed for multi-prion infections

Prion strain interference has been observed in mouse-adapted 
prions. Pre-infection of mice with an attenuated strain with a long-
incubation period suppressed the effect of subsequent infection 
with a strong strain possessing a short incubation period [9]. Strain 
interference was reproduced in vitro in a pure cell culture system in 
the absence of immunocompetent cells [10]. Interference is often 
observed in multi-virus infections, and whilst type I Interferon (IFN-I) 
has been detected in some studies, it is notably absent from others. 
For example, IFNs were not detected in tissues of prion-infected 
mice or the brains of CJD patients [11-13], whilst experimental 
hamster- and mouse-adapted prions evoked the upregulation of 
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Introduction
The characteristics of prion disease

Transmissible Spongiform Encephalopathies (TSEs), also 
known as prion diseases, are zoonotic diseases which include Bovine 
Spongiform Encephalopathy (BSE) and Creutzfeldt-Jacob Disease 
(CJD). Prion diseases are progressive neurodegenerative disorders 
which are ultimately fatal. The infectious agent, identified as a prion, is 
thought to be composed uniquely of abnormal Prion Proteins (PrPSc), 
generated from the conformational conversion of host-encoded PrPC 
[1]. Although PrPSc accumulates in the brain and exhibits amyloid-
like properties, an association between PrP-amyloid and pathological 
changes, including spongiform degeneration, neuronal loss and 
gliosis (astrocyte and microglia activation) remains unclear. To date, 
the latency of infection and host defense mechanisms against prion 
disease remain poorly understood.

Immune responses are predominantly classified as innate or 
adaptive. Adaptive immune responses are further categorized as 
humoral (characterized by antibody production through B cell 
activation) or cellular (recruitment of cytotoxic T cells). When 
exogenous pathogens invade mammalian hosts, the innate immune 
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IFN-Stimulated Genes (ISGs) Mx and 2’-5’-OAS, in animal models 
[14-16]. Moreover, genes of the Interferon Regulatory Factor (IRF) 
family were highly expressed in the microglia of CJD-infected brains 
[13]. Taken together, these results could suggest that IFN production 
is induced by the initial activation of the innate immune system 
following prion infection, rendering cells resistant to infection.

Protective role of the Pattern-Recognition Receptor (PRR)-
mediated innate immune response in prion infection

As previously mentioned, invading pathogens are initially 
recognized by several lymphoid cells of the innate immune system, 
resulting in the production of cytokines and IFNs to protect the 
host from further attack. Innate immune responses are initiated 
through PRRs such as TLRs and intracellular sensor molecules 
representing Retinoic Acid Inducible Gene-I (RIG-I) and Melanoma 
Differentiation-Associated Gene-5 (MDA5) [17,18]. PRRs recognize 
characteristic molecules, or Pathogen-Associated Molecular Patterns 
(PAMPs), such as bacterial cell wall components and viral envelope 
glycoproteins, in a number of foreign pathogens [19]. Type I IFN 
(-α and -β), pro-inflammatory cytokines (e.g., TNF-α), and anti-
inflammatory cytokines (e.g., interleukin-10) [20] mediated by 
transcription factors IRF-3 and/or IRF-7, are induced upon activation 
of downstream signaling processes following PRR stimulation. 
The secreted IFNs then act in an autocrine or paracrine manner to 
upregulate the expression of ISGs [18]. It is unknown whether prions 
themselves serve as PAMPs. The pretreatment of mice with innate 
immune activators, such as complete Freund’s adjuvant (TLR2 
agonist) [21] and unmethylated CpG DNA (TLR9 agonist) [22] was 
shown to delay the onset of prion disease. In contrast, post-treatment 
with LPS (TLR4 agonist) and Poly [I:C] (TLR3, RIG-I and MDA5 
agonist) had no observable effect on pathogenesis in prion-inoculated 
mice [11,12, 23]. Hence, prion pathogenesis is altered by innate 
immune responses based on stimulator-dependent experimental 
conditions. To date, the underlying molecular mechanisms remain 
to be determined.

Mice deficient for the MYD88 gene, which encodes a downstream 
adaptor protein recruited by all TLRs except TLR3, failed to exhibit 
significant changes in incubation time following inoculation with 
prion strain RML [24]. However, the expression of inactive TLR4 
or defective CD40L in mice resulted in the accelerated onset of 
disease [7,25]. One could speculate that PRR-stimulated TRIF-IRF-3-
mediated signal transduction may play a crucial role in the host defense 
system against prion infection, because downstream signaling of 
TLR4 has distinct signal transducing pathways via MYD88 and TRIF. 
Thus, we focused our attention on IRF-3, a key transcription factor in 
the MYD88-independent pathway and in the induction of IFN-I. Our 
research showed IRF-3-deficient mice readily succumbed to prion 
disease and exhibited pathological features consistent with severe 
disease following intra-peritoneal inoculation with three distinct 
prion strains [8]. In addition, our in vitro studies demonstrated the 
IRF-3 regulated production of PrPSc, and its inverse relationship 
with resistance to prion infection [8]. These results suggest MYD88-
independent signaling pathway IRF-3 is a key molecule in the host 
defense mechanism against prion pathogenesis. Recently several 
reports, including our own, have suggested the host defense system 
plays at least a partially protective role against prion infection.

How is prion pathogenesis established in the host?
Viral infection triggers phosphorylation of the IRF-3 carboxy-

terminal region [19], the translocation of phosphorylated IRF-3 
to the nucleus, and the transcriptional activation of IFN-I genes. 
Interestingly, it has also been reported that some virus infections 
enhance IRF-3 degradation and/or inhibit its phosphorylation, 
resulting in reduced IFN-I production and persistent viral infection 
[26-31]. Thus, we investigated whether prions regulated IRF-3 
expression in vitro. Our studies showed IRF-3 mRNA levels and 
promoter activity was significantly reduced in cells persistently 
infected with prions. Furthermore, we are the first to report that 
octamer-binding transcription factor-1 (Oct-1) plays a key role in 
IRF-3 promoter activity, and that Oct-1 expression was significantly 
reduced in prion-infected cells and animals [32]. Based on these results, 
we cannot exclude the possibility that prion protein accumulation 
directly impairs Oct-1 function, whilst it is also plausible that prion 
infection may alter Oct-1 expression resulting from a disruption to 
host cell protein synthesis. We propose that prion infection may 
accelerate the onset of pathogenesis by disrupting the innate immune 
system including IRF-3.

Conclusion
We have discussed the role of IRF-3-mediated innate immune 

response to prion infection. We propose that PRRs such as TLR4 may 
recognize prion/PrPSc by an as yet undetermined mechanism, and that 
activated IRF-3 may induce host cellular factors including IFN-I. In 
other words, it has evidenced that host cells respond to prion invasion 
and are trying to inhibit their replication. However, prion might be 
able to suppress the IRF-3 expression mediating Oct-1 reduction 
in order to infect the cells. This host-pathogen interaction could 
explain the latency of prion diseases. Although further investigation 
is required to identify IRF-3-induced host molecules which afford 
protection from prion invasion [33], our findings propose a novel 
approach in the development of prophylactic/therapeutics against 
prion disease. 
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