Efficacy of Dietary Sugarcane Product on Bowel Function and Blood Sugar Level in Adult Diabetic Patients: A Randomised Controlled Trial

Research Article

Phys Med Rehabil Int. 2018; 5(5): 1157.

Efficacy of Dietary Sugarcane Product on Bowel Function and Blood Sugar Level in Adult Diabetic Patients: A Randomised Controlled Trial

Amatya B1,2,3*, Lee SY1,2,3*, Elmalik A1,2,3*, Lowe M1,2, Khan F1,2,3

¹Department of Rehabilitation Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia

²Australian Rehabilitation, Research Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia

³Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia

*Corresponding author: Bhasker Amatya, Department of Rehabilitation Medicine, Royal Melbourne Hospital, 34-54 Poplar Road, Parkville, Victoria 3052, Australia

Received: September 24, 2018; Accepted: October 24, 2018; Published: October 31, 2018


Objectives: To assess effectiveness of sugarcane-based food product (NutriKane-DTM) in improving blood sugar level control and bowel dysfunction in adult diabetic subjects in rehabilitation settings.

Methods: Consecutive diabetic patients (n=51) admitted to a tertiary inpatient rehabilitation unit randomized to either an intervention group (n=25) who received additional NutriKane-D™ or the control group (n=26) (usual treatment). Assessments were at admission (T0), discharge (T1) and 3-months post-discharge (T2) using validated measures: Functional Independence Measure (FIM), Appraisal of Diabetes Scale (ADS) and Diabetes Health Profile (DHP).

Results: Mean age of participants’ was 68.9±12.7 (range 25.6-91.8) years, 69% were male, most had musculoskeletal dysfunction. At discharge (T1), both groups showed significant improvement in their everyday function (FIM), which maintained at 3-months post-discharge (T2). At T1, compared with controls, the intervention group showed greater adjustment in their management of diabetes (ADS, p <0.001, r = 0.7) and psychosocial adjustment (DHP) - activity subscales scores (p <0.001, r = 0.7). At T2, compared with controls, the intervention group (72%) reported either stable and/or improved bowel function, maintained significant improvement in ADS scores (p <0.001, r = 0.7) and DHP activity subscales (p <0.05, r = 0.6). Although there was a trend in reduction of blood glucose level in the intervention group (compared with controls), it did not reach significance. No between-groups difference was noted for other subscales.

Conclusion: Sugarcane-based food supplements may improve diabetic and bowel management issues in patients in rehabilitation settings. Further research is needed for longer-term outcomes with larger cohorts.

Keywords: Rehabilitation; Diabetes; Dietary supplement; Bowel function


Consumption of natural products from whole plant sources including gluten-free grains, soy, vegetables such as sugarcane varieties (sucrose removed), improve intestinal and digestive health [1-4]. Sugarcane fibre reportedly lowers the Glycaemic Index (GI) of most carbohydrate classes, using the Australian standard method of calculation (when taken with a meal) [1]. One locally available food product – NutriKane™, high in micronutrients (including essential trace elements, polyphenolic and flavonoid antioxidants), and high quality fibre (soluble/ insoluble, and resistant starch), is reported to be effective in improving intestinal and digestive health of patients admitted to sub-acute care-settings [5,6]. This product is high in bioavailable chromium, a micronutrient essential in the body’s ability to process blood glucose. It is a component in co-factor Chromodulin which facilitates insulin binding to its receptor [7-11]. Additionally, NutriKane-D™ inhibits the growth of pro-inflammatory bacteria, whilst promoting growth of probiotic bacteria and increasing production of short chain fatty acids [12].

Dietary product processed from sugarcane has been linked to improved blood glucose management due to its natural resistant starches found in red sorghum [2,13]. A number of small case studies (and anecdotal data) suggest that NutriKane-D™ may improve blood glucose level (BSL) [1,14]. It can be an option as a natural alternative for a low carbohydrate/low intestinal diet. Previously, NutriKane-D™ product was found to be an effective component of overall intestinal health strategy [5,6], approved by Food Standards Australia and New Zealand, and available in the local market. The objective of this study was to evaluate beneficial effects of this dietary product NutriKane-D™, on BSL management and digestive health compared with usual care in adult diabetic mellitus (DM) patients admitted to a tertiary rehabilitation unit.



This study was conducted in the Rehabilitation Unit at the Royal Melbourne Hospital (RMH), a tertiary referral centre in Victoria, Australia (HREC approval number: 2015.312). This service has medically supervised 40-beds with an active ambulatory program (including a community therapy and domiciliary rehabilitation services, specialist outpatient clinics etc.). It specializes in neurological, cancer, musculoskeletal, amputee and pain rehabilitation. The rehabilitation unit has well-established interdisciplinary rehabilitation programs for complex disabilities (including bowel and bladder programs, DM management) in line with high-quality policies, procedures, and practices.


All patients consecutively admitted to the rehabilitation ward who met inclusion criteria, were eligible to participate in the study. The inclusion criteria were: adults (over 18 years) with medically documented DM (Type 1 or 2: ICD-10 Codes: E10-E11), ability to communicate and understand English; able to provide informed consent and the clinical judgment of the admitting rehabilitation physician that the program would probably be beneficial for the individual. Patients were excluded if they were already on sugarcanebased food supplements (including NutriKane), unable to consume solid fibrous matter and those with severe cognitive issues, unstable medical, neurological or psychiatric disorders, and/or were pregnant.

Patients who met the inclusion criteria were invited to participate in this study by a researcher, who explained the study in detail. Those providing signed consent (signed by the patient or by the patient’s legally acceptable representative) were recruited (February 2016 to March 2017). They were able to withdraw from the study at any time. The participant diagnostic subgroups included various musculoskeletal and/or neurological conditions.


Randomization: As part of routine practice every patient admitted to the rehabilitation ward underwent clinical assessments including diabetes status, bladder/bowel dysfunction, pain, personal care needs and functional ability by the rehabilitation team. Following initial assessments, all patients were screened for eligibility and invited to participate in the study by an independent medical practitioner. Those providing a written consent were recruited and assigned a study-identification number. All participants underwent baseline-structured interview (T0) conducted by an independent clinician (medical) using standardized instruments (see measures). An independent project officer used a computer-generated block randomization to allocate participants to either the control (routine care) or treatment groups (NutriKane-D™) in a 1:1 ratio. Opaque sealed envelopes for concealed allocation ensured approximate balance between the treatment and control groups. Accessors were blinded to the participant group allocation. Those in the control group were managed with routine care (detailed in intervention section below). The treating therapy teams treated all patients on the ward based on clinical need, consistent with standard practice.

Intervention: The interdisciplinary rehabilitation program at the RMH incorporates medical, nursing and allied health (physiotherapy, occupational therapy, speech therapy, social work, dietetics, neuropsychology) input, tailored to promote patient education, selfmanagement skills and functional independence. DM is one of the common co-morbidity in the rehabilitation unit. The team promotes open communication and monitors relevant outcomes such as patient ability to identify symptoms (of hypo- and hyperglycaemia etc.), compliance with food and medication, blood sugar checks, exercise and maximizing function (mobility, activities of daily living); and addressing factors relating to participation. As per standard hospital protocol, those with DM also receive regular input from endocrinologists, dieticians and diabetes educators/nurses. The duration, content and outcome of the rehabilitation program were documented daily.

All participants in the treatment group received an oral nutritional supplement (NutriKane-D™) (Appendix 1), administered twice daily by the registered nurse on the ward, in addition to usual interdisciplinary care. While the participants in the control group received usual interdisciplinary care as per routine ward practice. Compliance with program and adverse effects were recorded daily from the medical charts, product-accountability records maintained and cross-checked by investigators. NutriKane-D™ was supplied by the Medikane Pty Ltd. The investigators and approved representative (pharmacist) ensured secure storage (at room temperature) on the ward. At discharge, participants in the intervention group were provided with required stock of the product to take home (total of 90 days including inpatient days), with detailed product information. A dedicated phone number was made available to all study participants, five days a week (from 9 am to 5 pm) to address any questions or concerns from patients (and caregivers). A research assistant phoned the intervention group participants once every week to remind them of the nutritional supplements, bowel and DM management regime. Overall compliance (including inpatient and at participants’ home for 90 days) was set as consumption at least 80% of the product.

Assessments: A face-to-face structured interview technique was used for assessments using standardized instruments (see Measures section). Assessment time points were at admission (T0), on discharge from the ward (T1) and 3-months post-discharge (by telephone) (T2). All outcome assessments were completed by independent assessors (rehabilitation physicians and research officer) who received 3 halfday training sessions in assessment and data collection. They did not share information about participants or assessments, and received separate case report forms at each interview. These assessments took approximately 30 minutes. The assessors did not prompt patients, but provided assistance for those who had difficulty with completing the questionnaires. The study comprised the following phases:

Baseline assessment (at admission) (T0) - assessments collated within 24 hours of admission to the service. It included demographics (age, gender, marital status, education, employment), diseaserelated characteristics (diagnosis, symptoms, medications and comorbidities) and assessments using standardized instruments. As per standard hospital protocols BSL were monitored, on the ward and glycosylated hemoglobin (HbA1c) was noted (see measurement section below). Any patient concerns/comments were captured in an open-ended questionnaire.

Assessment at discharge (T1): The same tools at T0 were utilized and final BSL were analysed, (see statistics section below). Adverse events during rehabilitation (such as falls, injury during treatment, hypoglycaemia etc.) were noted. A log book was provided to follow the same pattern of BSL monitoring at home.

Assessment at 3-months following discharge (T2): An independent blinded research officer conducted a telephone follow-up of all participants who had completed both T0 and T1 interviews. The information obtained was similar to the T1 and final BSL reported by participants, (including any HbA1c values obtained in the community) following discharge. The assessor did not have access to previous assessments, treatment schedules or treating rehabilitation therapy team documentation. Review of the blood monitoring log book for the BSL (including daily blood glucose profile) for the previous three days was obtained.

All assessments were secured and filed, and opened only at the time of data entry into a special study database by an independent data entry officer.


Participant demographic and clinical characteristics: This included: demographic information (age, gender, marital status, education level, employment); premorbid history (BMI, alcohol use, conditions and limitations, psychiatric history, and other major co-morbidities); disease-related information (diagnosis, date of diagnosis, type, complication,) and DM-related information (DM diagnosis, DM type/duration, treatment status including medications, adverse effects and complications).

Bowel assessment: Clinical assessment of bowel dysfunction was initially completed by admitting ward medical officer or nurse, consistent with existing practice. A research medical officer (independent of the ward or treating team) then completed further assessment using standardized instruments at admission (within 48 hours of admission and discharge). Any issues/ participant comments were captured in an open- ended questionnaire in data collection forms. Further, the following validated measures were used. The Bristol stool chart [15] determined stool consistency, patterns or changes in bowel habit and the effectiveness of treatment. The stool was categorized in 7 different types (types 1 and 2 indicate constipation, 3 and 4 being the “ideal stools”, and 5–7 tend towards diarrhea).

The Wexner Faecal Incontinence Score (WFIS) [16] measured faecal incontinence and symptom severity. The score was derived from a rating of frequency of the type of incontinence and whether the participant’s lifestyle was altered by incontinence (0=no incontinence or impact, 20 = worse possible incontinence and impact).

Activity limitation: The Functional Independence Measure (FIM) [17] assessed function (activity) and need for assistance. The patient dependency was measured in the 13 items: Self-care, Transfers, Locomotion, Sphincter control and Cognition subscales.

DM related measure: HbA1c and daily BSL (as per routine ward practice) were collected in the ward. Relevant DM-related information (medications, current symptoms, adverse events etc.) were noted.

The Appraisal of Diabetes Scale (ADS) [18]: a self-report 7-item questionnaire assessed individual’s thoughts about coping with DM. The items included: distress, control, uncertainty, anticipated future deterioration, coping, and effect on life goals on a 5-point adjectival scale scored (1= none at all to 5 total amount). The scores were summed to produce a score from 0-35 (0 representing the least and 35 the greatest impact of DM).

The Diabetes Health Profile (DHP-18) [19], comprised 18 items for 3 dimensions: psychological distress (6 items: dysphoric mood, feelings of hopelessness, irritability), barriers to activity (7 items: perceived limitation to activity, operant anxiety), and disinhibited eating (5 items: lack of eating control, response to food cues and emotional arousal). Each item has a four-point adjectival scale; items are summed within the three dimensions and transformed to produce a score from 0-100 (where 0 represents no dysfunction).

Statistical analysis

The SPSS Version 21 (IBM SPSS Products, USA) was used for all statistical analyses. Data on participant demographics, diseasecharacteristics was presented with descriptive numbers and percentages. There are no minimal clinically important differences (MCIDs) available to determine study power to demonstrate the superiority of Nutrikane-D™ compared with usual care regarding mean change in HbA1c from baseline to 3 months between the intervention and control groups. It was envisaged that this pilot study can be used to power a future larger trial. Comparisons of demographic and clinical characteristics between groups were conducted using univariate analyses of variance for continuous variables and likelihood ratio based ?2 test for symmetry and marginal homogeneity for categorical measures.

Primary endpoint was the mean change in HbA1c from baseline (T0) to 3 months (T2) and/or change in average 3-days blood sugar level from T0 to discharge T1 and T2. Change in BSLs (for each blood sugar profile) was based on the mean value of first 3 days of admission, last 3 days before discharge and last 3 days before the 3-months follow-up. Given the nature of the data, nonparametric statistical techniques compared change scores (T0 – T1, T0 – T2) for the control and treatment groups. Clinically important changes were estimated as effect sizes (ES, r), using Cohen’s criteria (0.2 = small, 0.5 = medium, 0.8 = large effect) [20,21]. Analysis of differences (within and between treatments) was performed using Wilcoxon’s matched-pair signed-rank test regarding BMI, and the blood sample measurements. Descriptive statistics was generated for each scale in the study. The level of significance was set at ‘p value’ of <0.05 (2-sided).


Of the 82 diabetics patients admitted to the rehabilitation unit during the study period, 51 patients agreed to participate and provided written consent. Of these, 25 were allocated to the treatment group to receive additional NutriKane-D™ supplement and 26 to the control group, who received usual care. Three participants in the control group were lost to follow-up (1 deceased and 2 uncontactable) at the 3-month follow-up assessment (T2) (Figure 1). The median length of inpatient stay was 17 days (inter quartile range (IQR) 12.5 – 27 days). There was 94% compliance with treatment program in the intervention, as per the a priori compliance definition. No adverse events were reported in either group.